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Abstract: Field-guided magnetic dynamics in magnetic multilayer nanostructures involves interconnection of the control 

field with localized spin states, which can occur directly or indirectly depending on the nature of the field and spin polarization. 

At the control electromagnetic field, this interconnection can be directly induced by the photon-induced spin-flip processes and 

indirectly by a bias field during antiferromagnetic exchange relaxation. The control impact of electric field and electric current 

on the magnetic states occurs indirectly via the spin polarization and spin current in combination with the exchange interaction 

of these polarized spins with localized magnetic states. The corresponding description of the magnetic dynamics is based on 

the modified Landau-Lifshitz equation and spin diffusion equations, taking into account the spin Hall and the inverse spin Hall 

effects for systems with normal metal sublayers. In the case of the magnetic nanostructures with the Rashba spin-orbit 

interaction in interfaces, the electric field-controlled magnetization is realized via the Rashba field-induced spin polarization, 

and its exchange interaction with localized magnetic states. Corresponding description is based on a tight-binding model of 

spin-orbit-coupled electrons exchange coupled to the localized magnetic states. 

Keywords: Magnetic Nanostructures, Laser-induced Remagnetization, Spin-orbit coupling, Spin Hall Effect,  

Rashba Spin-orbit Coupling, Electron Field-controlled Magnetization 

 

1. Introduction 

The external field-controlled magnetization of the 

multilayer magnetic nanostructures is based on the excitation 

of the coherent spin polarization, a spin current and their 

exchange interaction with localized magnetic states [1, 2]. 

The realization of such the control is determined by nature of 

the field, and the composition of the multilayer magnetic 

nanostructures [2]. In the case of the external electromagnetic 

(laser) field, the manipulation by the magnetization can be 

caused both by the effective internal bias field of the 

magneto-optic inverse Faraday effect (IFE) [1] and by the 

heating-induced effective internal bias field of the 

intersublattice exchange interaction during antiferromagnetic 

interaction relaxation [3-7]. 

The electric field-controlled magnetization can be related 

to the spin polarized current and the spin current generated 

from an entering electric current by the effective fields of the 

ferromagnetic exchange interaction and the spin Hall effect 

(SHE), respectively, coupled by the exchange interaction 

with the localized magnetic states. In these cases, the electric 

field-induced electric current is conversed to the spin 

polarized electric current under a magnetic polarizer or to the 

spin current under the spin-orbit interaction. 

The electric field-controlled magnetization can occur 

directly via the Rashba spin-orbit interaction and its effective 

bias field causing the spin polarization of itinerant electrons 

in interfaces exchange coupled with the localized magnetic 

states [7, 8]. In this case, the external electric field can result 

in changes of a surface magnetic anisotropy, specifically, 

switching of the perpendicular magnetic anisotropy. In this 

case, the electric field-induced changes of the magnetic 

anisotropy are described in the framework of a tight-binding 

model of spin-orbit-coupled electrons which exchange-

coupled to a background ferromagnetic order parameter. 

For today, the problem of physical limits of the temporal 

and spatial scales of remagnetization is related to the pulsed 
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laser-induced magnetization. Using laser excitation with fs 

pulses made it possible to influence the magnetization on 

femtosecond timescales. The ultra-fast laser-induced 

demagnetization opens up possibilities to push further the 

limits of operation of magnetic devices. This ultra-fast 

process is characterized by a femtosecond demagnetization 

and a picosecond recovery [1]. 

The current-controlled magnetization realizing via the 

spin-polarized current is of considerable interest in the 

multilayer magnetic nanostructures with the tunnel barrier 

sublayers having the property of a spin polarization filter. 

Due to the spin-dependent scattering of the transmission 

current, with respect to the magnetic configuration in the 

magnetic nanostructure, and the mutual dependence of the 

magnetic configuration on the spin polarization, the tunnel 

magnetic nanostructures represent the applied interest for 

spintronic devices. These magnetic nanostructires with the 

tunnel barrier sublayers based on the magnesium oxide 

compounds are characterized by high magnetoresistive effect 

and are utilized as sensing elements in magnetoresistive 

elements, as non-volatile memory elements and as high-

density magnetoresistive random-access-memory (MRAM) 

cells [2]. 

The current-controlled magnetization realized via the spin 

current, which is generated by the SHE in magnetic 

multilayer nanostructures with heavy metal sublayer, in 

contrast to the case of the spin-polarized current is not related 

to the charge transfer through interfaces. In this case, the spin 

current causes the torque on magnetic moments by direct 

transfer of spin angular momentum, enabling manipulation of 

nanoscale magnetic devices. It so doing, the incoming current 

density is orders of magnitude lower than using the spin-

polarized current [8]. 

The electric field controlled magnetization and the 

magnetic anisotropy in the magnetic multilayer 

nanostructures with the interface Rashba spin-orbit 

interaction is characterized by ultralow power consumption. 

It is related to the voltage-induced symmetry change and the 

change in the relative occupation of electron orbitals of 

magnetic atoms adjacent to the barrier insulating sublayers 

[13−15]. 

In the present paper, it is proposed the self-consistent 

sequential description of the field-controlled magnetic 

dynamics in the multilayered magnetic nanostructures based 

on the conception of the effective internal bias field together 

with the exchange interaction with the localized magnetic 

states. 

The paper is organized as follow. In Sec. 2, it is described 

the laser-controlled remagnetization as the combined effect 

of the pulsed laser-induced heat demagnetization followed by 

the effective internal magnetic biasing. The cases of the 

effective internal bias field related to the IFE and the 

relaxation of the AF exchange interaction are considered. 

Section 3 is devoted to the electric current-controlled 

magnetization via the spin-polarized current and the spin 

current caused by the ferromagnetic exchange interaction and 

the SHE, respectively. By solving the spin diffusion process 

in the presence of the SHE, it is described the dynamic 

feedback sustains a steady-state magnetization dynamics. 

Section 4 is devoted to the problem of the electric field-

controlled magnetization and the magnetic anisotropy energy 

in the multilayer magnetic nanostructures with heavy metal 

sublayers. In the tight-binding model of spin-orbit-coupled 

electrons exchange-coupled to a background ferromagnetic 

order parameter it is described the dependence of the 

magnetic anisotropy on the electron structure of the system 

and an electron band filling. 

2. Electromagnetic Field-driven 

Magnetization 

The impact of pulsed electromagnetic (laser) radiation on 

localized magnetic states of magnetic nanostructures can be 

caused both by the magnetic bias field of spin-orbit 

interaction of spin-polarized electrons excited by circularly 

polarized photons [1] and the magnetic bias field of the 

antiferromagnetic (AF) exchange interaction relaxing after 

the pulsed heat demagnetization [1, 2, 7]. Both cases are 

characterized by ultrafast magnetic switching. 

2.1. Magnetization Controlled by Pulse Circularly Polarized 

Radiation 

Equation Chapter 1 Section 1A direct impact of the 

circularly polarized laser radiation on magnetic states of 

magnetic nanostructures represents a combined effect of 

electron-photon excitation and coherent spin-orbit-induced 

spin flips, known as the magneto-optic IFE. The 

corresponding effective internal magnetic field is described 

by the expression [1, 2], 

IFE

*
( ) ( )H E Eα ω ω× 

 
� � �

= ,              (1) 

where α  is the tensor of magneto-optical susceptibility, 

( )E ω
�

 is the electric field, ω  is the frequency. 

Under the circularly polarized laser irradiation, photon-

excited electron wave functions becomes a superposition of 

several eigenstates that effectively increase the electron 

orbital moment leading to an increased spin-orbit coupling 

and thus resulting in an intensification of the spin-flip 

process. The spin-flip in the ground state is because 

circularly polarized light mixes a fraction of excited-state 

wave function into the ground state and causes the perturbed 

ground state to have a net magnetic moment. Duration of the 

spin-flip process is defined by the energy of the spin-orbit 

interaction in the perturbed electron states. For a material 

with a large magneto-optical susceptibility the spin-orbit 

coupling may exceed 20 meV and thus spin flip process can 

be as fast as about 20 fs. 

Formation of the effective magnetic field of the IFE occurs 

with a time delay relatively the laser-induced heat 

demagnetization. The temperature dependence of the 

magnetic ordering parameter is characterized by the 

longitudinal relaxation in addition to the transverse relaxation 
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characterizing the angle variation of the magnetic order 

vector. 

The corresponding macroscopic motion equation can be 

considered as a generalization of the atomistic approach 

containing the modified stochastic Landau-Lifshitz equation 

[1, 2], 

( ) ( )s H s Hef ef
ds

dt
ξ ξγ γλ     × ×        

= −
� �� ��� �

�

+ +s? ,      (2) 

where 

( ) ( )0( ) ( ) 2 / , 't t T t tα βχ χ λ γµ δ= , 

for the classical atomic spin moment s , where λ  is the 

parameter of the coupling to the bath system ( 0λ < , | | 1λ >> ), 

and second equation describes the correlation of the 

components of the Langevin field component, )t(  ξ ( T  is the 

temperature). It is assumed, that the magnetic field efH
�

 

contains the effective magnetic field of the IFE. Ensemble-

averaging (2) results in the Landau-Lifshitz-Bloch (LLB) 

equation [5, 7] 

( )2
||( / )ef ef

dm
m H m m H m

dt
γ γα= × − ⋅  

�
� �� � �

 

2
( / ) m m Hefmγα⊥

  × ×   

�� �
+ ,              (3) 

where 0m sµ < >
� �

= , || (2 )Tλ λ= Ω and (1 )λ λ⊥ = − Ω  (here 

1 /
MF

TΩ = ) are the dimensionless longitudinal and 

transverse parameters, respectively, MF
T  is the mean-field 

Curie temperature. 

A complete description of magnetic dynamics includes the 

temporal evolution of the electron, spin and lattice 

temperatures, eT , sT  and lT , respectively. This temporal 

evolution is described in the three-temperature model by the 

system [1, 2], 

/ ( ) ( ), , ( , , )i i ij i j iC dT dt C T T P t i j e l sδ= − + = ,     (4) 

where ijC represents the coupling between the ith and jth 

baths, iC is their heat capacity, and ( )P t  is the laser-induced 

heat pulse, duration of which is defined by the laser pulse 

duration. Depending on the heat capacities iC , effective 

temperature differences can be very large. Since the electron 

heat capacity is typically one to two orders of magnitude 

smaller than that of the lattice, eT may reach several thousand 

Kelvin within the first tens of femtoseconds after the laser 

excitation, while the lattice remains relatively cold even after 

the equilibration processes. 

In accordance with (3) and (4), the magnetization 

dynamics involves the primary heat demagnetization under 

the laser pulse and a subsequent biasing by the effective 

magnetic field of the IFE. Hence, formation of the bias field 

must begin after the heat-induced demagnetization as it is 

shown in Figure 1 [3, 4]. 

 

Figure 1. The magnetization ( M
�

) switching by a short and intense 

circularly polarized laser pulse. Shortly after the pulse, magnetization 

collapses due to heating. During the cooling, M
�

restores along the effective 

field. 

The laser-induced remagnetization can only occur when 

the intensity and pulse duration of the circularly polarized 

laser radiation are related in a particular way [5, 6].
 

2.2. Heat Remagnetization Under by Pulse Linearly 

Polarized Radiation 

Magnetic dynamics of two-sublattice ferrimagnetic 

compound (e. g., GdFeCo) under the impact of the laser-

induced heat pulse is described by the modified Landau-

Lifshitz-Bloch (LLB) equations [5, 6], 

||
'

H H
2

1

| |

ExEX EX

m

dm
m H m

dt
ν

ν
ν ν νν

ν

αν ν
ν

α
γ

 ⊥
 + ×
 
 

= − × +
� �

�
� �

,      (5) 

where ( , )TE REν = , mν
�

 is magnetization of element ν , TE 

and RE are the transition (Fe) and rare-earth (Gd) elements, 

respectively, νγ is the gyromagnetic ratio, ||

να  and να ⊥  are 

transverse and longitudinal damping parameters, EX

νH is the 

exchange field from the ν th magnetic sublattice in a mean 

field approximation. RE is calculated via the mean-field 

approximation. The equation (5) together with (4) describes 

magnetic dynamics of the each sublattice and the total 

magnetic dynamics of the ferrimagnetic. 

Solving (4) and (5) results in the "ferromagnetic-like" 

transitional magnetic state with subsequent remagnetization 

of the magnetic sublattices. For the ferrimagnetic GdFeCo 

compound this laser-induced remagnetization is 

demonstrated n Figure 2 [7].
 

 

Figure 2. The non-equilibrium dynamics of the Fe and Gd magnetizations 

with respect to an external magnetic field H. 

At the strong enough spin-orbit coupling the interaction of 

sublattice magnetizations with the lattice becomes dominant 

and remagnetization becomes impossible. 
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3. Electric Field and  

Spin-orbit-controlled Magnetization 

The electric field-controlled magnetization of the magnetic 

nanostructures with strong enough spin-orbit interaction is 

related to the electron spin polarization which can be caused 

both by the SHE of converting an electric current to the 

transverse spin current [8] and by the effective field RB of 

the Rashba spin-orbit interaction [9]. In the both case the 

impact on the localized magnetic state occurs via the 

exchange interaction. In the first case, the impact of the 

electric field is realized via the exchange coupling the 

localized magnetic states with the spin polarization and the 

spin current, in the second case. 

3.1. Spin-polarized current-induced Torque on 

Magnetization 

The electric field current manipulation by the localized 

magnetic states in multilayer nanostructures can be realized 

via a spin current and its exchange interaction with localized 

magnetization. The spin current can be generated both by the 

exchange magnetic interaction of the magnetic polarizer and 

by the SHE converting the charge current into transverse pure 

spin current without charge transfer. 

The spin current interacts with localized magnetic 

moments via the exchange spin torque. The effect of the spin 

torque is modeled by an s-d exchange Hamiltonian, 

sd exH J s S= − ⋅
��

, where s
�

 and S
�

 are the spins of itinerant 

and localized electrons, respectively, and exJ  is the 

exchange coupling strength between them. In fact, the s-d 

model captures most of the physics on the interplay between 

spin-polarized transport and the magnetization dynamics of 

local magnetic moments. 

The quantum-statistical averaged Schrӧdinger equation for 

the averaged local spin operator, M S
��

=  (here ⋅ ⋅ ⋅ denotes 

averaging) with an added phenomenological damping terms 

is known as the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) 

equation [1, 8], 

ex
eff m M

JM M
M H M

t t B

γ α γ
µ

 × 
∂ ∂

= − × + × −
∂ ∂

      

��

� �
� � �

,  (6)
 

describing magnetization dynamics under the spin current. 

The last term on the right hand side contains a spin density

m s=
� �

. Clearly, that only the transverse spin density m
�

 

influences on the magnetization state via the spin torque [2], 

( )ex

B

m M M P M M P
J

T α βγ
µ

      × × − × ×      
= − = −

� � � � � ���
,     (7) 

where /ex x BJ mα γ µ=  and /ex y BJ mβ γ µ= −  in the considered 

free-electron approximation, P
�

is the initial vector of spin 

polarization before the interaction of the spin current with 

local magnetization. The first term on the right-hand-side of 

the equation (7) is so-called field-like term (out-of-plane 

torque) and the second term is the Slonzhevski term (or in-

plane torque). At a certain threshold spin currents density 

level (which for the spin-polarized currents is of the order 10
8 

A/cm
2
) the spin torque can cause magnetization switching. 

The equation of motion for the density magnetization has 

the form, 

s

m
J T R

t

∂
= −∇ +

∂

�
� � �

+ ,            (8) 

where sJ
�

is the spin current density, 0R
�

= in the ballistic 

case and sfR m τ
� �

= / in the diffusion case ( sfτ is the spin-flip 

time). Due to the quasi-stationary dynamics of the magnetic 

density, the spatial transfer of spin density from spin current 

to localized spins is equivalents to the spin torque. 

The current-induced spin torque near 

magnetic/nonmagnetic interfaces is formed via the spin-

dependent scattering when the transverse component of spin 

quantum state of the incident spin flux is absorbed and the 

effective spin torque on the layer magnetic moment is 

generated. 

3.2. Electric Current Spin-orbit Guided Magnetization 

The electric current control of magnetization in the 

ferromagnet (FM)/normal heavy metal (N) nanostructures is 

closely related to the problem of sustaining the uniform 

steady-state magnetization dynamics. Solving this problem 

involves using the SHE of the spin-orbit-induced conversion 

of the electric current into the transverse spin current, and the 

inverse spin Hall effect (ISHE) of the conversion of the spin 

current into the transverse electric current [1, 2]. 

In such the magnetic nanostructures with the SHE the 

induced magnetic dynamics is accompanied by reciprocal 

processes of the spin torque and spin pumping, whose 

interplay leads to a dynamic feedback effect interconnecting 

energy dissipation channels of both the magnetization and 

electric current. 

Characteristic properties of the electric current-induced 

magnetic dynamics in the presence of the SHE are exhibited 

in the model bilayer magnetic nanostructure, insulation 

ferromagnet (IF)/SHE normal metal (NM) with the effective 

magnetic field of the magnetization precession along the 

Cartesian axis x , the electric current applied along the axis 

y  and the spin current along the axis z  (Figure 3) [8]. 

 

Figure 3. The interconnection between the magnetization procession and the 

electric current 0Ic µ= ∇
� �

 ( 0µ  is an electrochemical potential) via spin 

pumping, the ISHE, the SHE and spin backflow closed in the feedback loop. 
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The closure of reciprocal processes of the spin torque and 

spin pumping via SHE and ISHE into the feedback loop is 

described by the system [8], 

2

2

0

s 0
,

1
,

,
2

2

sf

r
c s

r
s

D
t z

J
e z

J
e z

µ µ µτ

σ µµ θ

σ µ θ µ

 
 
  

 
 
  

∂ ∂= −∂ ∂

∂= − ∇ + ×
∂

∂= − + ×∇
∂

� �
�

�� �

�� �

z

z

           (9) 

with the boundary condition, 

( ) [ ] [ ]( )00 0 / /( ) =z s G e m m m dm dtr sJ z  Js µ=  × × + × = � � � � �
ℏ

� �
. (10) 

The first equation in (9) describes the diffusion of the spin 

accumulation µ�  (the non-equilibrium spin density of 

itinerant electrons in NM), the second and third equations 

describe the charge and spin current densities cJ
�

 and sJ
�

, 

respectively, at the spin Hall effect in the normal metal 

sublayer. In addition, 0 / 2µ  is the electrochemical potential, 

D  is the diffusion constant, rσ  is the conductivity, Sθ is the 

spin Hall angle and rG  is the real part of the spin-mixing 

conductance [8], in (10) the subscript zero means the value at 

the interface. 

The first and second terms of the boundary condition (10) 

represent the spin torque and the spin pumping, respectively. 

Solving (9) and (10) results in the equation [8], 

0( ) ( )eff s spz j mc
dm dm

H m m m
dt dt

γ ω α α × × = × × + + ×
� �

� �
� � �

+  

2 z
zfb

mm
m m m z

t t
α

 
 
 
 

∂∂
× ×

∂ ∂

�
� � �

+ + ,           (11) 

where /c c cj J J=
��

, and 

tanh
2

2 coth

r

s s c
s

r r

dNG

J
deM d NM G

λγ λω θ
σ λ

λ

=
+

ℏ
,        (12) 

2 0(1) 2

( ) 2 1(2)

( )

2 ( 2 )

s r
sp fb

s r r

G
a

e M d GM

λθ β γ σ
σ λ β

=
+

ℏ
       (13) 

( coth( / )Ndβ λ= ). Here sω  is the strength of the spin 

torque, spa  describes the conventional enhanced damping 

from the spin pumping with the spin backflow, the term fba

reflects the dynamic feedback induced by the combination of 

the SHE and ISHE. 

The feedback-induced damping is qualitatively described 

by two last equations in (9). Increase of the magnetization 

procession results in an increase of the pumped spin current 

0sJ
�

 and the spin diffusion z µ∂
�

 according to the third 

relation. This leads to the larger electromotive force 0µ∇
�

 in 

the NM according to the second relation at the fixed electric 

current, cJ
�

. The change of 0µ∇
�

 will eventually feed back 

into sJ
�

 limiting its further growth. As consequence, the 

growing magnetization precession is inhibited. 

4. Electric Field Rashba  

Spin-orbit-driven Magnetization 

Bilayers containing an interface between a thin layers of a 

heavy-metal and a magnetic one are important hybrid 

materials in spintronics, as they combine magnetic order, 

strong spin-orbit interaction, and an broken inversion 

symmetry. This together with exchange interactions of the 

magnetic layer can lead to perpendicular magnetic anisotropy 

(PMA) [9], Dzyaloshinskii-Moriya interactions [10, 11] spin-

orbit torques, Rashba-Edelstein effects, and more [12]. Spin-

orbit interactions near the interface provide a handle to alter 

these properties by tuning chemical composition, interface 

structure, or gate voltages, as demonstrated most extensively 

for magnetic anisotropy [13, 14]. 

4.1. Controlled Magnetic Anisotropy in the Free-electron 

Model 

Equation Chapter 1 Section 1 An electric field applied to 

the two-dimensional electron system of the interfaces via 

breaking an inverse symmetry and spin-splitting with spin 

polarization due to s-d-exchange interaction can form a 

perpendicular magnetic field changing the total surface 

magnetic anisotropy. The perpendicular surface magnetic 

anisotropy is formed in the bilayers composed of the 

magnetic sublayer based on 3d transition metals and heavy 

metal sublayer with the strong enough spin-orbit interaction. 

The interface magnetization of the bilayer magnetic 

nanostructure is described in the free electron approximation 

by the Hamiltonian, containing the band Stoner model with 

the spin-orbit Rashba interaction [9], 

( )
2

0
2

R
x y y x

p
H J S p p

m

α
σ σ σ= − ⋅ + −
� �

ℏ
 ,        (14) 

where p
�

 is the electron momentum operator, S
�

 is the order 

parameter, σ�  is the Pauli matrix vector, 0J  is the exchange 

interaction between itinerant electrons and localized 

magnetic moments, and R soe Eα η=  is the Rashba parameter 

proportional to soη  which describes spin-orbit coupling. It is 

assumed, that the electric field is pointed along the axis z
�

( E E z
� �

= ) and the unite vector m S S
��

= /  is defined as 

(0,sin ,cos )m θ θ�
=  in the Cartesian coordinate system with the 

axis z  perpendicular to the interface. 

Solving spectral problem for the Hamiltonian (14) results 

in the θ  dependent single particle energy [9], 

2
2 2 2 2

0( sin ) sin
2

k x y Rk k k E
m

σε σ θ θ= − + − 
 

ℏ
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1/2
2 2 2 2 2

0( ) ( cos )R x yJ S k kσ α θ− + + 
  ,  (15) 

where 

22 2 2 2
/ 2 ( ( ) / 2 )SOR RE m m e Eα η= = −ℏ ℏ .        (16) 

Here ℏk = p / , 1σ = ± is the spin quantum number, 

0 /Rk ma= ℏ  is the momentum shift, ~R Eα  is the Rashba 

parameter. The direction of the momentum shift in (15) 

changes sign as the spin index, 1σ = ± . These shifts also 

change sign with m - m→
� �

 for a given σ , that reflects the 

Rashba spin splitting. RE  in (15a) reflects the single particle 

energy gain relatively to zero electric field ( 0E = ). 

At 2
0( ) ( )R xJ S kα>  in the linear approximation in 2

E (15) 

after averaging over the Fermi sea takes the form, 

( )
2

2 2 2

0

2
1 cos ,

2
an R x x

T
E E T k k

J S m
θ ↑ ↓= − = < > − < >

 
 
 

ℏ
, (17) 

where ⋅ ⋅ ⋅ denotes an average over the Fermi sea. Thus, the 

Rashba spin-orbit interaction produces an perpendicular 

magnetic anisotropy of second order in the external electric 

field, E . The Rashba magnetic field due to the internal 

electric field in the surface region of an ultra-thin 

ferromagnet can make an important contribution to the 

perpendicular magnetic anisotropy. 

4.2. Driven Magnetic Anisotropy in a Tight-binding Model 

Magnetic anisotropy energy (MAE) refers to the 

dependence of the total energy of a magnetic system on the 

real-space orientation of its magnetization. The MAE is 

responsible for the orientational stability of magnetic 

domains, and hence lies at the heart of both magnetic hard 

disk drives and magnetic random access memories. There are 

two main contributions to the MAE: the magnetocrystalline 

anisotropy, which arises from electronic spin-orbit 

interactions, and shape anisotropy which arises from the 

magnetostatic dipolar interaction. For a thin ferromagnetic 

film, the magnetostatic energy is minimizedwhen the 

magnetization is in the plane of the film, leading to in-plane 

magnetic anisotropy (IMA). 

To stabilize perpendicular magnetic anisotropy (PMA), the 

magnetocrystalline anisotropy energy must overcome the 

shape anisotropy. From the technological point of view, PMA 

is very important, since it enables an increased bit storage 

density, through a reduced size of the magnetic domains that 

store each bit of information. Solving this problem involves 

description of the magnetocrystalline anisotropy of a 

ferromagnet/heavy-metal bilayer, driven by interfacial 

Rashba SOC, highlighting different physical regimes [15]. 

The corresponding description is based on an electron tight-

binding model, which allows to analyze the MAE with 

respect to the three competing energy scales: the non-

relativistic kinetic energy 't , the Rashba SOC strength ''t , 

and the strength of the exchange coupling J to the 

ferromagnetic order parameter. This leads to conditions for 

the realization of the PMA and its dependence on the electron 

structure. 

4.2.1. Model of Two-layer Magnetic Nanostructure with a 

Rashba Effect 

The properties of itinerant electrons with broken inversion 

symmetry and SOC in a two-dimensional lattice with one 

orbital per site, nearest-neighbor hopping, and Rashba-like 

spin-momentum is described by the Hamiltonian [15] 

( )?
' ' '

, , '

1
' ''

2
e is ss ij ss js

i j s s
H c t it z R cσ σ

< >
= − − × ⋅∑ ∑   

� ��
.  (18) 

Here the sum is over near-neighbor links, †
isc and jsc

arethe creation and annihilation operators for an electron with 

spin s at a lattice site iR
�

, 0
'ssσ  is the unit 2 2× spin matrix, 

and ( , , )
x y zσ σ σ σ= is the vector of Pauli matrices. The vector 

connecting site i to site j is ij i jR R R= −
� � �

, and the cross 

product favors spin-orientations perpendicular to the bond 

direction, / | |ˆ
ij ij ijR R R=

� �
and the normal to the lattice plane, 

z . The hopping strength is given t , and the angle Rφ
characterizes the relative strength of conventional spin-

independent hopping, ' 2 cos Rt t φ= and chiral Rashba hopping 

'' 2 sin Rt t φ= . It is imposed Born-von Karman periodic 

boundary conditions and introduced the lattice Fourier 

transforms of the operators, iik R
is

k

c e= ∑
� �

�
, where N  is the 

number of lattice sites and k
�

is the electron pulse. 

This transforms the Hamiltonian (17) to the form, 

0( ) ( ) ( )ReH k H k H k= +
� � �

,            (19) 

where 

( )
( )

0
0 ,

.

( ) ' cos cos

( ) '' sin sinR

x y

y x
x y

H k t k k

H k t k k

σ

σ σ

= − +

= − −

�

�      
 (20) 

For small k , the Hamiltonian (19) describes a Rashba 

electron gas 

The total Hamiltonian also involves the ferromagnetic 

interaction between quasiparticles and magnetic condensate,

= -BH B σ⋅
� �

, i.e., 

0
0( ) ( ) ( ) ( )e BH k H k H E k b kσ σ= + + ⋅

� � � � � �
= ,      (21) 

where 

( )

( )( )

0 ,

,

( ) ' cos cos

( ) ( ) ,

( ) '' sin sin

sin cos sin cos .

R

x y

R

y x

E k t k k

b k b k B

b k t k x k y

B J x y zθ ϕ ϕ θ

 
 
 

= − +

= +

=

= + +

�

� � � � �

� � �

� � � �

-
      (22) 
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Here ( )Rb k
� �

is the Rashba spin-orbit field, and the coupling 

to the ferromagnetic background is given by B
�

, where the 

spherical angles θ and ϕ specify the magnetization 

orientation and J is the strength of the coupling. 

In the diagonalized form the Hamiltonian, 

( ) ( ) ( ) ( ) ( )H k E k P k E k P k+ + − −= +
� � � � �

,           (23) 

where the band energies 

0 ( ) | ( ) |E E k b k± =
� � �
∓                 (24) 

and the eigenvector projectors 

( )01 ( )垐( ) ( ) , ( )
2 | ( ) |

b k
P k b k b k

b k
σ σ± = ± ⋅ =

� �
� � �

� � .    (25) 

The plus sign corresponds to the lower energy majority 

band and the minus sign to the higher energy minority band. 

Band dispersions are plotted in Figure 1 for some 

representative cases. 

The electronic density of states (DOS) is given by 

( )
( )2

( )
2

( )
n

dk
E knE Eδ

π
ρ

=±
−= ∑ ∫

�
�

,        (26) 

which leads to the number of electrons per lattice site, 

( )
( )( ) ( ) ( )

2
2

( )

F
E

dk
f k f k dE EN E δ ρ

π −∞

−+ += =∫ ∫
�

� �
.   (27) 

The integral in (27) is over the first Brillouin zone, and the 

function, ( )( ) ( )n F nf E Eθ= −k k describes the occupation of the 

corresponding eigenstate, ( )nE k . The coupling to the 

ferromagnetic background induces a net spin moment on the 

itinerant electrons, given by 

( )2
ˆ( ) ( ) ( ) ( )

(2 )

E
F

f k f k b k
dk

M dE m E
π ∞

−+ −= =∫ ∫
� � �

�
� �

,  (28) 

where ( )Em
�

is the spin-polarized density of electron states 

(DOS). The energetics of the itinerant electrons can be 

obtained from the internal energy, which at zero temperature 

is defined as 

( )2
( )( ) ( )

2

E
F

n n

n

dE E
dk

U f k E k Eρ
π=± −∞

= =∑ ∫∫
�

� �
,      (29) 

Due to additivity contributions of the bare band, Rashba, 

and exchange interactions to the internal energy, 

( ) 02
)( )Tr ( ) (

2
n n R B

n

dk
U f k P k H k U U U

π=±
= = + +∑ ∫

�
� � �

. (30) 

Solving the Hamiltonian (19) is based on the Green 

function, 

( ) 1 ( )

( )
( , ) ( ) n

n n

P k

E E k
G k E E H k

−

=±
∑

−
= − =

�

�
� �

,      (31) 

which, specifically, is related to the internal energy and its 

derivatives. For instance, the DOS and the spin-polarized 

DOS are given by 

2
)

1
( ) ImTr ( ,

(2 )

dk
E G k Eρ

π π
= − ∫

�
�

        (32) 

and 

2

1
( ) ImTr ( , )

(2 )

dk
m E G k Eσ

π π
= − ∫

�
��

,      (33) 

respectively, where the traces are over the spin components. 

The uniform static spin susceptibility for a fixed number of 

electrons is determined as 

( , ) ( , )
2(2 )

1
ImTr

E
F

M dk
dE G k E G k E

B
Rαβ

αβ
β
α α βσ σ

π
χ π

−∞

∂
=

∂
= − −∫ ∫

�
� �

, (34) 

where ( ) ( ) / ( )F F FR m E m E Eαβ
α β ρ= comes from ensuring that 

/ 0eN B
β∂ ∂ = . Substitution the spectral representation of the 

Green function (31) into (34) results in the expression, 

'
2

' '

( ) ( )

( ) ( )

1
ImTr

(2 )

E
F

n n

nn n n

P k P k
dE

E E k E E k

dk
Rαβ

α βαβ σ σχ
π π −∞

∑ −
− −

= − ∫ ∫
� �

� �

�

,   (35) 

where summation over 'n n= corresponds to intraband 

electron transitions and, consequently, to the intraband part 

( intra

αβχ ) of the magnetic susceptibility. Summation over 

'n n≠  corresponds to interband electron transition and, 

consequently, to the interband part ( inter

αβχ ) of the magnetic 

susceptibility. Therefore, the total magnetic susceptibility is 

sum, intra inter

αβ αβ αβχ χ χ= + . The interband magnetic susceptibility,

inter

αβχ , contains the integrand, the partial fraction 

decompositions of which, according to the Sokhotsky 

formula, leads to the relation, 

1

( ( ))

1
ImTr ( )

F
E

n
E E k

n

dE f k
π −

−∞

− =∫ �
�

,       (36) 

The intraband magnetic susceptibility, intra

αβχ , contains the 

integrand which is the partial fraction with a second order 

pole that results in the relation, 

1

2( ( ))

( )1
ImTr

( )

F
E

n

E E k nn

dE
f k

E kπ −−∞

∂
− =

∂∫ �

�

� ,      (37) 

which is the partial derivative of (36) with respect to ( )E kn

�
. 

Taking into account (36) and (37) the intra- and interband 

magnetization susceptibilities can be represented as 
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intra 2
( ) ( ) ( ( ))垐

(2 )
F n

n

k E E k
dk

b b k R
αβ

β αβα δχ
π =±

−∑= −∫
� �

�
�

    (38) 

and 

( )inter 2

( ) ( )垐( ) ( )
( ) ( )(2 )

dk f k f k
b k b k

E k E k

αβ
α β αβχ δ

π
− +

− +

−= −
−∫

� � �
� �

� � ,    (39) 

respectively. The intraband term collects the contributions 

from the Fermi surface, while the interband term collects 

those from the Fermi sea. 

Band dispersions given by (24) and respective densities of 

states essentially depend on the parameters ''t  and J  of the 

Rashba spin-orbit coupling strength and the exchange 

coupling to the ferromagnetic order parameter, respectively, 

as it is represented in Figure 4 [15]. 

 

Figure 4. Band and dispersions and the respective densities of states for representative cases: (a) 0Rφ = ( ' 2 , '' 0, )t t t J t= = = , (b) / 6Rφ π=  

( ' 3 , '' )t t t t= = . 

No the interfacial Rashba SOC ( '' 0t = ) and finite 

exchange coupling ( J ) to the background magnetization 

leads to a constant vertical splitting of the bands (Figure 4a). 

Finite Rashba SOC ( '' 0t ≠ ) and no background 

magnetization ( 0J = ) leads to k -dependent horizontal 

splitting of the bands (Figure 4b). The finite Rashba SOC and 

background magnetization lead to dependence of the 

dispersion on the orientation of the magnetization with 

respect to the lattice. When the magnetization is normal to 

the plane ( B || z ) the system has fourfold rotational symmetry. 

When the magnetization is along a nearest-neighbor direction 

( B || x ) the bands have a unidirectional shift in the 

perpendicular direction ( y ). 

4.2.2. Magnetic Anisotropy Energy 

The MAE is due to the variation of the internal energy of the 

itinerant electrons as the ferromagnetic background 

orientation rotates. The MAE vanishes if there is no spin-orbit 

coupling, i.e. in the given model if there is no Rashba coupling 

( '' 0R tφ = = ). Phenomenologically, the MAE is expanded in 

angular functions that respect the symmetry of the system [15]. 

For the square lattice (effectively tetragonal symmetry), 

2 4

2 4 4( , ) sin ( cos 4 ) sinMAEU K K Kθ ϕ θ ϕ θ′≈ + +    (40) 

with θ and ϕ the spherical angles describing the orientation 

of the ferromagnetic background. It follows from 

perturbation theory arguments that 2 1
2 ''( )

n
nK t t'' / J

−∝ . 

Higher-order anisotropy constants should decline rapidly in 

magnitude, as they are proportional to higher powers of the 

ratio between the spin-orbit interaction strength and the spin 

splitting, which is often small. The anisotropy constants can 

then be determined by fitting the angular dependence of the 

internal energy. Keeping all other parameters fixed, the 

internal energy given by (30) is an explicit function of the 

angles describing the ferromagnetic orientation, ( , )U θ ϕ . 

Assuming that the model form in (40) holds, evaluating the 

internal energy for three orientations is sufficient to fix the 

anisotropy. The system will have PMA provided that both of 

the following inequalities are satisfied: 

}2 4 4

2 4 4

( / 2, 0) (0, 0) ,
0

( / 2, / 4) (0, 0) .

U U K K K

U U K K K

π
π π

′− = + +
>

′− = + −
.  (41) 

Here the magnetic anisotropy coefficients iK as functions 

of the macroscopic parameters are determined by derivatives 

of the relation, MAEU U= , with respect to the spherical 

angles, θ and ϕ . It can be shown that the anisotropy energy 

goes from IMA → PMA → IMA as function of the band 

filling. 

The first and second derivative of the internal energy with 

respect to the ferromagnetic moment orientation are 

described by the expressions, 

( )( )2
2 4 4

4
4

2 cos 4 sin sin 2 ,

sin 4 sin ,

U B
M K K K

U B
M K

ϕ θ θ
θ θ

ϕ θ
ϕ ϕ

∂ ∂
′= ⋅ = + +

∂ ∂
∂ ∂

′= − ⋅ = −
∂ ∂

�
�

�
�

   (42) 

where M is the spin magnetic moment of the electrons 

defined in (28), and B is the effective magnetic field 

produced by the local moments defined in (22). From the 

phenomenological expression for ( , )MAEU θ ϕ  it follows that 

the magnetic torque [ ]M B×
� �

vanishes for the high-symmetry 

nearest- and next-nearest-neighbor directions ( / 2θ π= , 
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/ 4nϕ π= ) with {0,1, ..., 7}n = , and for magnetization normal to 

the lattice plane ( 0,θ π= ). The second derivatives of the 

internal energy are particularly simple to evaluate for these 

high-symmetry directions, since cross derivatives involving 

both polar and azimuthal angles vanish. Therefore, it is 

required only the Cartesian component of the spin 

susceptibility tensor for the plane perpendicular to a chosen 

magnetization direction (i.e. only the transverse spin 

susceptibility are needed). For the high symmetry directions 

the net spin moment of the itinerant electrons is aligned with 

the ferromagnetic background, M B
� �

|| . For the in-plane high 

symmetry directions, 

( )
2 2

2 4 42

2 2

42

,

,

1
2

2 2

1
8

2 2

zz

M x

yy

M x

U J M
K K K

J

U J M
K

J

χ
θ

χ
ϕ

∂
′− = − + +

∂

∂
′− = −

∂

 
 
 

 
 
 

� �

� �

||

||

=

=

   (43) 

and for the polar magnetization orientation, 

   

2 2

22

1

2 2

zz

M z

U J M
K

J
χ

ϕ

∂
− =

∂

 
 
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||

= .            (44) 

These equations determine the magnetic anisotropy 

constants via transverse components of the magnetic 

anisotropy susceptibility depending on the symmetry of the 

system. Consequently, the type of magnetic anisotropy (PMA 

or IMA) related to symmetry of the system. is determined 

MAE which dependence on the symmetry of the system. 

When M z
� �

|| , the system has fourfold rotational symmetry 

from which it follows that 
xx yyχ χ=  and 0

xy yxχ χ= = . 

Equations (43) and (44) contain a common term, 

2

( ) ( )

| ( ) |(2 )

f k f kdk

b k
χ

π
+ −−

= ∫
� ��

� � ,          (45) 

whose subtraction gives the relation, 

0

2 2

( )

| ( )|(2 )

( ) ( )R

R

dk B b k

J b kJ

f k f kM

π
χ ⋅= −− += ∫
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� �

� �

,    (46) 

describing the volume susceptibility.  

The expression for the intraband part of the spin 

susceptibility follows from (38) and does not contain χ : 

2
intra 2

( ( ( ))ˆ( ))
(2 )

F n
n

E E k
dk

b k
αα δχ

π =±
−∑= ∫

�
�

�
.    (47) 

Subtracting this term from the interband part of the spin 

susceptibility in (39) results in the equation, 

2

inter inter 2(2 )

( ) ( )
ˆ( ( ))

| ( ) |

dk f k f k
b k

b k
α

αα ααχ
π

χ χ + −−=
−

= −∫
� � �

�
� � .    (48) 

In (47) and (48) , ,x y zα = , and ˆ ( )b kα

�
 is the Cartesian 

component of the unit vector defining the spin quantization 

axis for each k
�

. As it is seen, intra

ααχ  is positive definite, 

while inter

ααχ  is negative definite. 

The magnetic anisotropy type, i.e. PMA or IMA, can be 

established in two ways. When M || x the longitudinal 

component, 0
zzχ = , and the sign of the MAE is determined 

by 
0χ . On the other hand, for M z

� �
||  the volume 

susceptibility, 0 0χ = , so the sign of the MAE is decided by 

the competition between the intraband and interband 

contributions to the spin susceptibility
xxχ . 

Conditions favoring PMA are determined by the magnetic 

anisotropy constants. When M z
� �

|| and ''t J<< , from (46) 

follows that, 

2

2

intra 2
ˆ( ( ))

2
( ( )) )

( '')
(

(2 ) 2
F n F

n

xx
b k E E k

tdk
E

J
δχ ρ

π =±
≈ −∑ =∫

� �
�

,     (49) 

where )( FEρ  is the total density of states at the Fermi energy. 

The average of the matrix element was simplified by 

assuming that the exchange fields are much stronger than the 

spin-orbit fields, so that
2 3

/| ( ) | ( '') 2b k M t J≈ −
� �

. Combining 

these expressions leads to an approximate form, 

2 ( ))( FM JK Eρ≈ −  for the uniaxial anisotropy constant. The 

scale of anisotropy constant, 2

ref /( '')K Jt= is a useful figure 

of merit for MAE. PMA is likely to be stable when the 

density-of-states at the Fermi level is small: since 0 1M≤ ≤ , 

it can expect PMA if ) 1( FJ Eρ ≤ . The states at the Fermi 

level are the ones affected by SOC in the most important way, 

in energetic terms. A large DOS at the Fermi level then 

translates to a large number of single-particle states that gain 

the most energy from SOC once the magnetization is tilted 

away from the perpendicular direction, which explains why 

this contribution favors IMA. 

4.2.3. PMA for the Gapped Half-filled Band Spectrum 

In the case, in which the ferromagnetic exchange splitting 

is large enough to produce a gape for the half-filled 

ferromagnetic insulator, the Fermi level lies in this gape. The 

majority band is full, ( ) 1f k+ =
�

, and the minority band is 

empty, ( ) 0f− =k . Starting from (22), (24) and (29), the 

internal energy for this case is simply 

( )
( )

2
0 ( ) | ( )|

2

dk
U E k b k

π
= −∫

�
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,         (50) 

where only the second term in the integrand contains 

information about the orientation of the ferromagnetic 

background, given by the angles θ  and ϕ . 

The expansion of the spin splitting ( ) || b k gives its explicit 

dependence on the θ  and ϕ , which have the form, 

( )0
0

1

| ( ) | ( ) cos ( )2
n

n
b k b k k

n

γ
∞

=
= ∑

 
 
 
 
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,      (51) 
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where 

2 2
0 2 2

,
2 ( )

( ) ( ) | cos ( )
( ) |

R
R

R

B b k
b k b k J k

b k J
γ

⋅
= + =

+

� ��
� � � �

� �|
|

. 

The expansion (51) can be written more explicitly in the 

form, 

( )
0 0

| ( ) | ( )(sin ) cos (sin )
n pp n n p

n
n p

b k B k θ ϕ θ
∞ −

= =
= ∑ ∑
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    (52) 

with expansion coefficients, 

( ) 1/2

1

2
2 2

( '') (sin ) (sin )
( ) ( 1) 2

( ) |

p p n

n n

n p n p
y x

n
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−

−
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+

  
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�

� �
|

.   (53) 

The internal energy then has the corresponding expansion, 

( )
0 0

( , ) (sin ) cos (sin )
n pp n n p

n
n p

U Uθ ϕ θ ϕ ϕ
∞ −

= =
= ∑ ∑    (54) 

with coefficients, 

( )2
( )

2

p

n
p
n

dk
U B k

π
= −∫

�
�

          (55) 

Because the integrand is odd under x xk k→ −  and 

y yk k→ − , coefficients 2 1 0p
nU + =  and 2 1 0

k
pU + = , i.e. only 

terms even in both p  and n survive. In combination with 

the symmetry of the binomial coefficients, this also leads to 

the equality, 
2 2 2
2 2 .

n p p
n nU U

− =  

Then, the first terms in the expansion are 

( )( )0 0 0 2 0 2
4 40 2 4 4

2 41
( , ) sin 2 cos 4 sin

8
U U U U U U Uθ ϕ θ ϕ ϕ+≈ + + + −  (56) 

in according with the phenomenological form given in (40). 

For the gapped half-filled case, it is consistent to expand 

the integrand in the | ' |t' J<< limit, 

2
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0
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2
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22
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2
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,
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≈ − −
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Substitution (57) into (55) results in the expressions, 

2 4 4
0 0 2 0
2 4 4 43 3

1 ( '') 15 ( '') 15 ( '') 1
, ,

4 64 64 4

t t t
U U U U

J J J
= − = − = ,  (58) 

describing the coefficients in the expansion of the internal 

energy (54). 

Then, comparison (54) with the phenomenological 

expression (40) leads to the equations, 

2
4

2 4 4

1 ( '') 5
, ,

4 8 5

Kt
K K K

J
∆ ′= − ∆ = − = −        (59) 

for the magnetic anisotropy coefficients. These anisotropy 

coefficients satisfy the PMA condition (39). 

Thus, PMA is realized in the two-layered magnetic 

nanostructure composing of an insulating magnetic layer and 

heavy metal with the Rashba spin splitting effect in the case of 

the half-filled bands. In so doing, MAE depends directly on the 

exchange interaction between the spin-polarized iterant 

electrons and magnetic states of the ferromagnetic layer. 

4.2.4. Physical Regimes of the MAE Forming 

The magnetic anisotropy formation in the two-layered 

magnetic nanostructure, ferromagnetic/heavy metal, depends 

on the relations between parameters of the exchange 

interaction ( J ), kinetic energy ( 't ) and the Rashba SOC 

( ''t ). Different interfacial magnetic states are determined by 

conditions of strong exchange ( ' ''J t t>> >> ), intermediate 

exchange ( ~ ' '')J t t>>  and weak exchange ( ' ~ ''t J t>> ). It is 

assumed, that the SOC strength is smaller than the non-

relativistic bandwidth. These three cases are defined by how 

the exchange energy due to the ferromagnetic coupling 

compares to these two energy scales. The magnetic 

anisotropy is determined by comparison of the local 

characterization of the MAE via the susceptibility with the 

global characterization via internal energy differences. For 

the present model, the contribution to the MAE from the 

volume susceptibility (46) vanishes when M || z , while it is 

the only non-vanishing contribution for M || x . 

In the first case, the domination of the exchange energy 

leads to two well separated bands. The dependence of the 

MAE on the number of electrons per lattice site ( eN ), 

obtaining from the spin susceptibility, for two stable 

orientations of the ferromagnetic background, is 

characterized by PMA only in narrow range around 1eN =  

and by IMA for most values of eN  (Figure 5a). 

When M || z (44), the interband contribution to the 

susceptibility (48) favors PMA, while the intraband 

contribution (47) favors IMA. The amplitude of the intraband 

contribution is larger than the interband one, and is 

maximized when the Fermi level is at the Van-Hove 

singularity in the DOS of each band. When 1eN = and M || z , 

the intraband contribution must vanish because the system is 

gapped. Only the interband term remains finite and it favors 

PMA. When M || x (43), the volume susceptibility (46) is the 

only non-zero contribution, and reproduces essentially the 

same MAE as found for M || z . This agreement shows that 

the higher-order anisotropy constants ( 4K and 4K ′ ) are very 

small when compared with 2K . The MAE from the band 

energy difference between M || x  and M || z is in perfect 

agreement with the one extracted from the susceptibility 

(Figure 5b). The PMA is realized near half-filling. Moving 

from electron per site 1eN =  to 0eN = , the interband 
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contribution is accurately proportional to M , which 

decreases monotonically to zero. The intraband contribution 
qualitatively follows ( )FEρ , which increases up to the Van-

Hove singularity and then decreases again. 

 

Figure 5. MAE as the function of eN  for the strong exchange case, ' ''J t t>> >> . (a) The MAE from the second derivatives of the band energy, from the 

connection to its phenomenological form. (b) Internal energy differences decomposed using (30). 

In the second case, where the exchange energy is 

comparable to the non-relativistic band width by setting

'J t= , the two bands overlap with minority band occupation 

beginning for 0.5eN > , and the lower band being completely 

full for 1.5eN > . This intermediate exchange coupling 

strength case is applicable to many ferromagnetic metals. The 

MAE from the spin susceptibility is characterized by PMA in 

a much wider range of eN than in the strong exchange 

interaction case (Figure 6a). 

 

Figure 6. MAE as the function of eN  for the strong exchange case, ' ''J t t>> >> . (b) The MAE from the second derivatives of the band energy, from the 

connection to its phenomenological form. (c) Internal energy differences decomposed using (30). 

Comparing (47) and (48), it appears that the Fermi sea 

term can be enhanced by reducing the k-dependent spin 

splitting, | ( ) |b k , which follows from weakening J , so that 

the interband contribution has a larger amplitude than the 

intraband one. However, near 0eN =  (likewise near 

2eN − ), the intraband contribution is linear in eN  while 

the interband one is quadratic, so that the former can 

overtake the latter, and thus favors IMA. The MAE from the 

band energy difference between M x
� �

|| and M || z and its 

decomposition (Figure 6b) exhibits half of the difference in 

the SOC energy overlaps with the net internal energy 

difference. The energetic competition between the Rashba 

SOC and the coupling to the ferromagnetic background is 

settled differently when either only one or when both bands 

are partially filled, due to an allowed transfer of electronic 

occupation between the two bands at the Fermi sea. 

In the third case where the exchange energy is comparable 

the SOC strength ( ''J t= ) the splitting between the two 

bands is small. The intraband and interband contributions to 

the susceptibility are almost identical leading to a small net 

value of the MAE. 

5. Conclusions 

The pulse field manipulation by magnetic properties of 

multilayer magnetic nanostructures is based on an excitation 

of the coherent electron spin polarization coupled by the 

exchange interaction with localized magnetic states and heat-

induced demagnetization. The impact of the pulse laser field 

on magnetic states can occur directly via the effective bias 

field of the inverse Faraday magneto-optic effect or indirectly 

via the laser-induced heat demagnetization with subsequent 

action of the effective bias field. The controlled impact of the 

strong enough laser field on the magnetic nanostructures with 

an antiferromagnetic exchange interaction occur due to the 

effective bias fields caused by the different time of the heat 

demagnetization of magnetic sublattices and the relaxation of 

the antiferromagnetic exchange interaction. 

The electric field control can occur via the spin 

polarization of an electric current under the ferromagnetic 

exchange interaction in ferromagnetic layers and its 

exchange interaction with the localized magnetic states. In 
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multilayer magnetic nanostructures with the spin Hall effect 

the electric field control occur via a spin-orbit induced 

conversion of the electric current to the spin current coupled 

with the localized magnetic states by the exchange 

interaction. 

The pure electric field can control the magnetic anisotropy 

in the magnetic nanostructures, with the Rashba spin-orbit 

interaction, by the external gate voltage applied across a 

dielectric layer. In this case, the connection of the electric 

field with the localized magnetic states occurs via the 

exchange interaction of polarized itinerant electrons with the 

localized magnetic states. The corresponding mechanism of 

the magnetic anisotropy formation and its dependence on the 

interface electron structure are described in the framework of 

a tight-binding model of spin-orbit-coupled electrons 

exchange-coupled to the localized magnetic states. 
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