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Abstract 

Four linear multilevel mixed-risk models were compared using model assumption tests and predictions. Models varied by the 

number of random intercepts from 1 to 4, producing 2-level through 5-level models of the same measure, operative time. 

Normality of the dependent variable and residuals, variance homoscedasticity, level-1, and level-2 exogeneity were tested 

using the robust test of the level-1 residuals variance by surgeon, estimates of density, skew, and the Hausman test. Measure 

(operative time by hospital and surgeon) aberrancy and risk classification were evaluated using traditional methods and used to 

assess distribution measures. The dependent variable and the level-1 residuals required transformation for linearity and 

variance stabilization, respectively. Normality criteria were met for both level-1 and level-2 residuals and standardized 

residuals. The likelihood ratio comparing the four models was significantly larger for the 5-level (1016.1; P<0.00005) model 

than the likelihood ratio for the four-level and other models. Shrinkage was greatest for the 2-level model (0.039; P<0.00005) 

and least for the 5-level model (0.028; P<0.00005). Level-1 variance homoscedasticity was confirmed by the robust variance 

test across all models (P>F=1). Aberrant value detection did not require the exclusion of any observations, while prediction 

intervals revealed low or high risk for 54.2% of surgeons for the 2-level model and 8.6% for the 5-level model. The traditional 

(c2 = -11.01; P=1) and instrumental variable (c2 = 21.06; P=1) Hausman tests show that the null hypothesis cannot be rejected 

for level-1 or level-2 exogeneity. Once level-1 and level-2 exogeneity was confirmed, and since deconfounding was a model 

consideration, causal inferential capacity was assumed. The likelihood ratio, residual variance, shrinkage, and predictions show 

that the 5-level model is preferred to the other models. 
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1. Introduction 

One of the main objectives of multilevel mixed modeling 

is to compute empirical Bayesian means, which represent the 

means of the posterior distribution or clusters of interest. 

These clusters can include a range of factors, such as the 

longitudinal weight of pigs [1], a comparison of measuring 

devices [2], or an evaluation of the performance of hospitals 

or surgeons [3]. Before 2001, the standard approach to risk 

modeling included single-level modeling based on the esti-

mated measure; if the measure were a binary outcome, such 

as mortality, standard logistic regression could be employed 

[4]. Thus, sample size differences, clustering effects, and 

reliability were not considered; only patient-level effects 
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were assessed despite their aggregation with effects from 

other levels such as hospital and surgeon. These method 

flaws came to be seen as a reporting failure [5], and recom-

mendations included the use of “multilevel models” and 

“report formats that emphasize the statistical uncertainty of 

the results.” Shahian concludes by recommending that other 

quality markers, including measures of process and structure, 

be included. The outcome of flawed risk assessments is mis-

classification due to the acceptance of unreliable or aberrant 

clusters or model misspecification. In public reporting, mis-

classification results in mislabeling the risk of a specific hos-

pital or physician as incorrectly low or high for an outcome, 

such as mortality, or a complication, such as surgical site 

infection, or a process measure, such as length of stay. In 

quality improvement, misclassification points in the wrong 

direction for improvement, resulting in resource misalloca-

tion. In the recommended model form, in addition to the tra-

ditional dependent variable such as mortality, readmission, or 

operative time, random intercepts are incorporated to repre-

sent additional study variables, such as hospitals or Physi-

cians; however, other institutional or Physician attributes 

could also be effective as a random intercept, such as inpa-

tient or outpatient status, among others. 

This study compares multi-level models to assess surgical 

outcomes across patients, surgical procedures, surgeons, and 

hospitals. It aims to improve model performance over the 

traditional two-level model and reduce risk misclassification. 

Operative time is an independent measure of risk for postop-

erative complications [6]. Operative time is also used to as-

sess surgical learning [7]. 

2. Methods 

The data set used in this study has been previously de-

scribed. I compared four multilevel mixed linear random 

intercept models with 2, 3, 4, or 5 levels to risk-adjust opera-

tive time for 28,045 surgical cases across 631 surgeons and 

twenty-three hospitals. Since operative time has a lognormal 

distribution, it was transformed to eliminate skewness 

[STATA command "lnskew0"]. All statistical analyses were 

performed using STATA 17 software [8]. The primary exam-

ples in this study are estimates of the risk of long-duration 

surgical procedures for hospitals and surgeons. This process 

aims to provide information that the surgeon or hospital could 

use for quality improvement. 

2.1. Model Fitting 

Standard demographic, preoperative risk and case-mix varia-

bles were included as fixed and random effects in the models 

using the STATA command "mixed." Random intercepts were 

added conditionally for inpatient/outpatient status, the number of 

procedures performed for each patient, and the identification of 

each hospital and surgeon. The likelihood ratio test (STATA 

command "lrtest") was used to compare models and determine if 

adding random intercepts improved model fit. Random intercepts 

were included only if the diagnostic standard error (dxse) could be 

calculated for most surgeons. The likelihood ratio test assesses the 

hypothesis that the random intercept is zero; if true, the random 

intercept is not helpful. The dxse was chosen because it depends 

on the difference of the between surgeon variance and the with-

in-surgeon variance (standard error of the surgeon random inter-

cept). However, surgeons with standard errors of the random in-

tercept larger than the between-surgeon variance were excluded 

because of the need to take the square root of a negative. 

2.2. Testing Model Assumptions 

Assessment of normality of transformed operative time is 

by comparison of the kernel density estimate with a normal 

reference distribution and the normal quantile plot [STATA 

commands “kdensity” and “qnorm”]. Comparison of the 

absolute maximum likelihood (ML) random intercepts to the 

absolute empirical Bayesian predicted random intercepts 

confirms that the ML version is larger. Absolute values are 

used because both ML and EB versions can be negative; using 

absolute values identifies which is furthest from zero for both 

sides of zero. Level-1 residuals are assumed homoscedastic 

and evaluated using the median-centered version of Levene’s 

test [9] to avoid any possible confounding due to skew in their 

distribution [STATA command “robvar2”1]. Level-2 residuals 

(the random intercepts) are also assumed homoscedastic; 

however, testing for homoscedasticity is unnecessary, as the 

random intercept does not vary within group. Normality as-

sumptions for level-1 residuals when n is large, as in this study, 

are more difficult to confirm due to limitations of normality 

testing such as the Shapiro-Wilk W test and the 

Shapiro-Francia W’ test; both for normal data have sample 

size limitations of 2,000 and 5,000, respectively. Level-1 raw 

and standardized residuals can be evaluated for normality 

even though the central limit theorem applies, and normality 

could be assumed [10, 11]. The formula for standardized 

residuals results in an asymptotic standard normal distribution. 

Both raw and standardized residual normality are evaluated 

by kernel density estimate comparison to a normal reference 

distribution and estimates of skew [STATA commands, 

kdensity, and “summarize, detail” or “sktest”]. The best linear 

unbiased predictions (BLUPS, random intercepts, or level-2 

residuals) [STATA command “predict”] are evaluated for 

aberrancy using the criterion of greater than two diagnostic 

standard errors. Graphic analysis of aberrancy is facilitated by 

expressing each random intercept in diagnostic standard er-

rors (dxse) and comparing it against the number of cases in 

dxse space. While random intercept prediction intervals based 

on comparative standard errors are used to identify surgeons 

with either an insignificant or high risk of long-duration 

procedures, diagnostic standard errors are used to test the 

                                                             
1 Robvar2, is a customized version of the standard STATA command “robvar” 

which enables the comparison of variances of level-1 residuals, for example, for a 

larger number of clusters than the standard version allows. 
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assumption that approximately 5 percent of total surgeons 

should have either high or low operative times. The compar-

ative standard error (cse) is estimated by multiplying (1 - 

shrinkage factor) by the between surgeon variance (random 

effect). The dxse is estimated by multiplying the shrinkage 

factor by the between surgeon variance. Dxse is equal to cse 

when the shrinkage factor is 0.5, larger than cse when the 

shrinkage factor is > 0.5, and less than cse when the shrinkage 

factor is < 0.5. The shrinkage factor is also the reliability of 

the maximum likelihood random intercept; low reliability, < 

50%, identifies clusters where the variance of the prediction 

errors is greater than the posterior variance. The shrinkage 

factor can be calculated by dividing the random intercept 

variance by the sum of the random intercept variance and the 

level-1 residual variance, where the level-1 variance is di-

vided by the number of cases. The traditional Hausman test is 

used to compare two different estimators (in this case, fixed 

effects and or random effects models) of regression coeffi-

cients and confirm level-2 homogeneity [STATA command 

“Hausman”]. The formula for Hausman multiplies both the 

transposed and the untransposed difference of the two coef-

ficient vectors times the difference of the two covariance 

matrices; misspecification is confirmed if the two estimators 

are different. Level-1 errors and time-varying and 

time-constant covariates are further assessed for exogeneity 

by comparing the fixed effects and random effects in instru-

mental variable models [STATA command “xtivreg” followed 

by “Hausman”] with the Hausman test. 

Caterpillar charts identify surgeons and hospitals at low and 

high risk of long-duration procedures. If more than five per-

cent are classified as having low or high risk, misclassification 

is assumed. However, the low-risk classification is an in-

nocuous label, and a single-tailed approach could be consid-

ered if one has no interest in exemplar identification. 

3. Results 

The attributes assigned to random intercepts include inpa-

tient/outpatient status, number of surgical procedures per-

formed for each case, hospital ID, and surgeon ID. There are 

644 surgeon clusters, fifty-one with just one case and thir-

ty-three with two cases. Random intercepts could not be es-

timated for thirteen clusters, seven with just one case, two 

with two cases, and one each with four, nine, ten, and thir-

teen cases. The maximum likelihood random intercept relia-

bility is less than 0.5 in all clusters with just one case. 2,909 

combinations of the four random intercepts used in the 

5-level model exist. After also considering aberrancy, there 

are 587 remaining clusters for analysis. The dependent vari-

able operative time requires transformation to achieve nor-

mality as shown in figure 1. 

 
Figure 1. Normality testing of the observed and transformed operative time: Left panel kernel density estimates: untransformed (long 

dash-dot), transformed (solid line), and reference normal distribution (dash). Right panel normal quantile plot: reference normal (dash) and 

transformed (circles) showing that the reference normal quantile plot and the transformed value of operative time are nearly identical. 

3.1. Likelihood Ratio Comparison 

The likelihood ratio comparison of linear multilevel mod-

els to ordinary least squares (OLS) regression and the other 

multilevel models shows that all the multilevel models are 

better than ordinary least squares, and the 5-level model is 

preferred to the other multilevel models. Additional random 

intercepts in this model reduce the residual variance from the 

2-level model at 0.14537 (0.14296-0.14783) to 0.14535 

(0.14294-0.14780) in the 3-level model, a further reduction 

to 0.14018 (0.13779-0.14261) in the 4-level model and to 

0.13581 (0.13346-0.13820) in the 5-level model. The residu-

al variance can be referred to as the unexplained variance 

and, as such, reflects goodness of fit. Larger residual vari-

ances represent less informative data and greater shrinkage. 

Based on having the largest likelihood ratio, the 5-level 
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model is preferred to the other models. 

Table 1. Comparison of models using the likelihood ratio. 

Model 
Compared to 

OLS 

Compared to the nested mul-

tilevel model 

2-level 7305.8*  

3-level 7437.7* 2-level = 132* 

4-level 10060.4* 3-level = 2622.6* 

5-level 11076.5* 4-level = 1016.1* 

* P<0.00005 

3.2. Comparison of Maximum Likelihood, 

Empirical Bayesian Random Intercepts, 

and Shrinkage factors 

Reliability-adjustment of the random intercepts occurs in 

the multilevel mixed modeling process, resulting in the mean 

differences in the maximum likelihood versus empirical 

Bayesian values. The adjustment (shrinkage) moves the ran-

dom intercept value closer to zero. In this case, the 5-level 

model has the lowest average reliability adjustment (ML-EB), 

while the 2-level model has the highest average adjustment. 

These findings comport with residual variance results noted 

above, where the greatest shrinkage is associated with the 

largest residual variance. 

Table 2. Surgeon-weighted comparison of the absolute maximum likelihood random intercept with the absolute empirical Bayesian random 

intercept. 

Model 
Mean difference 

ML - EB 

lower confi-

dence limit 

upper confi-

dence limit 
t-test ML - EB Pr (T>t) 

Shrinkage fac-

tor 

2-level 0.039 0.033 0.045 12.7 0.0000 0.863 

3-level 0.036 0.03 0.041 13.6 0.0000 0.845 

4-level 0.029 0.025 0.034 12.5 0.0000 0.852 

5-level 0.028 0.023 0.032 12.2 0.0000 0.856 

 

3.3. Assess for Homoscedasticity of Level-1 

Residuals 

Table 3. Robust test of equal variances for level-1 residuals by 

model. 

Model W50 W10 

2-level 0.46; P>F=1 0.47; P>F=1 

3-level 0.41; P>F=1 0.51; P>F=1 

4-level 0.49; P>F=1 0.49; P>F=1 

5-level 0.57; P>F=1 0.90; P>F=1 

Robust tests for equality of variances for level one residu-

als show that we cannot reject the null hypothesis that the 

variances are equal for all models (table 3): residuals were 

transformed to their reciprocal to stabilize the variance [12]. 

The W50 is a median-centered version of Levene’s test, and 

the W10 is the 10% trimmed mean version, which is less 

sensitive to skew than the standard Levene’s test. 

3.4. Normality Testing 

Level-1 raw and standardized residuals can be evaluated for 

normality even though the central limit theorem applies. Both 

observed (figure 2) and standardized (figure 3) level 1 residual 

densities have identical shapes. Level 2 residuals (random in-

tercepts) from a linear model are normally distributed as they 

represent the mean of the posterior distribution (figures 4 and 5). 

 

http://www.sciencepg.com/journal/ajtas


American Journal of Theoretical and Applied Statistics http://www.sciencepg.com/journal/ajtas 

 

33 

 
Figure 2. Level 1 residuals are estimated by comparing predicted and observed values. Normality is tested by comparing the densities of the 

observed and fitted values. These estimated values are represented by the solid line in the density plots above; the dashed line is the reference 

normal density. The observed densities show a slight skew (0.14 to 0.19). 

 
Figure 3. Standardized level-1 residuals are the level-1 residuals (observed – predicted) multiplied by the inverse square root of the estimat-

ed error covariance matrix. Above, the standardized level-1 residuals are represented by the solid line, and the dashed line represents the 

reference normal distribution. The densities show a slight skew: 0.14 for the 5-level model, 0.15 for the 4-level model, and 0.19 for the two- 

and 3-level models. The formula for standardized residuals results in an asymptotic standard normal distribution. 
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Figure 4. Random intercepts were created in each multilevel model for surgeons. The solid line above represents the observed surgeon random 

intercepts for each model, while the dashed line is the normal reference distribution. There is a slight skew: 0.05 for the 5-level model, 0.03 for 

the 4-level model, 0.25 for the 3-level model, and 0.18 for the 2-level model. 

 
Figure 5. Standardized level 2 residuals are obtained by dividing the random intercepts by the diagnostic standard error; the densities show a 

slight skew of 0.14 for the 5-level model, 0.16 for the 4-level model, and 0.19 for both the two and 3-level models. The solid lines are the 

estimated residuals, and the dashed lines are the normal reference distribution. 
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3.5. Testing for Cluster Aberrancy 

 
Figure 6. A score created by dividing the random intercepts by the diagnostic standard error aids aberrant value detection by surgeon cluster 

(each open circle), plotted on the vertical axis against the number of cases per cluster on the horizontal axis. Only 5% of the surgeon clusters 

should be larger than two dxse. The upper left panel for the 2-level model identifies 29 (4.87%) outlying clusters, and the upper right panel for 

the 3-level model also identifies twenty-nine outlying clusters. The lower left panel for the 4-level model and the lower right panel for the 

5-level model identify 19 (3.2%) outlying clusters. Since there are no models with more than 5% of the random intercepts (surgeon clusters) as 

outlying, no cases require exclusion from analysis. 

3.6. Exogeneity Confirmation 

The Hausman tests [13], and the instrumental variables 

models confirm level-1 and level-2 exogeneity for both co-

variate and error types. The traditional Hausman test results 

showed chi-squared = -11.01, degrees of freedom = 100, and P 

= 1. This is compelling evidence that we cannot reject the null 

hypothesis that the random-effects model adequately models 

the individual-level effects confirming level-2 exogeneity. A 

positive definite result for the Hausman test is not certain; the 

negative result reported here can occur in a finite sample 

because there is nothing to prevent it from being negative 

when computed in the standard form [14]. The Hausman test 

for level-1 endogeneity results shows chi-squared = 21.06; 

degrees of freedom = 96; P = 1.0, that is, the null hypothesis 

that there is no correlation between the covariates and the 

level-1 residuals and that level-1 residual expectation is zero 

cannot be rejected. The lack of correlation with the error term 

(residuals) means that the x (covariates) vector is exogenous, 

and the variation in y is the causal treatment effect of x. Sim-

ilarly, level-2 exogeneity, the lack of correlation between 

random intercepts and covariate(s), means that the random 

intercepts do not represent the covariates but an unobserved 

institutional effect such as the value a hospital inpatient or 

outpatient setting, or surgeon adds to the patient experience. 
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3.7. Classification of Risk 

 
Figure 7. After excluding low reliability and aberrant values and based on random intercepts, the 2-level model caterpillar chart (upper left) 

identifies 172 surgeons that have a reduced risk of long-duration surgical procedures (LDP) and 151 with an elevated risk; 55% of 587 sur-

geons are identified as having either high or low risk. The 3-level model chart (upper right) identifies 120 surgeons with a reduced risk of 

long-duration procedures and 106 with an elevated risk of LDP (38.5%). The lower left chart, the 4-level model, identifies fifty-nine surgeons 

with a reduced risk of LDP and fifty with a high risk (18.6%). The 5-level model identifies thirty surgeons with a reduced risk of LDP and 

twenty-one with a high risk (8.7%). There are minor but significant differences in the rank-ordered slopes of the random intercepts shown in the 

figure above by model: 5-level 0.00085 (0.00082 – 0.00086); 4-level 0.0009005 (0.00087598 – 0.00093); 3-level 0.0011 (0.00106 – 0.0011); 

2-level 0.00138 (0.00136 – 0.0014). Additionally, the median standard error of the random intercepts by model is different at 0.08 for the 

2-level, 0.088 for the 3-level, 0.12 for the 4-level, and 0.145 for the 5-level model. 

The assessment of whether a surgeon or hospital has a high 

or low risk of long-duration surgical procedures varies widely 

with the number of random intercepts used to represent in-

stitutional attributes of the data. When two random intercepts 

were used, 54.2% of surgeons were identified as having either 

low or high risk of long-duration procedures; when four 

random intercepts were used, only 8.6% of surgeons were 

identified as having either low or high risk. The four random 

intercepts used in the five-level model include inpatient status, 

the number of procedures performed on each patient, a sur-

geon identifier, and a hospital identifier. A fifth random in-

tercept was assessed in a 6-level model; however, the number 

of unusable clusters increased since the dxse could not be 

calculated due to the need to take the square root of a negative. 

In the modeling process, the four potential random intercepts 

were used as coefficients when not used as random intercepts 

in the lower-level models. The effect of missing random in-

tercepts on surgeon-level long-duration surgical procedure 

risk identification is large. When evaluating hospital perfor-

mance, it may also be necessary to include surgeon, inpatient 

or outpatient status, and procedure count random intercepts to 

reduce misclassification. 
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Figure 8. Classification of hospitals for operative time by model: 2 level model shows that 20 of 23 hospitals (87%) are classified as having 

high (11) or low risk (9) of a long-duration procedure; 3 level model 11 of 23 hospitals (47.8%) are classified as high (5) or low risk (6); 4 level 

model shows 10 of 23 hospitals (43.5%) are classified as high (5) or low risk (5) and the 5 level model shows 4 hospitals (17.4%) are classified 

as high (1) or low risk (3). Additionally, the median standard error of the random intercepts by model is different at 0.011 for the 2-level, 0.051 

for the 3-level, 0.064 for the 4-level, and 0.085 for the 5-level model. 

3.8. Causal Interpretation and Deconfounding 

Once strict exogeneity is confirmed, as in this operative 

time model, coefficients can be interpreted as a causal effect. 

A variable that is not confounded, body mass index, shows 

that a one-unit increase in BMI causes a 0.0058 (P < 0.0005) 

hour (0.35 minutes) increase in operative time. Causal in-

terpretation of regression coefficients is affected by the 

reasons for their differences: for example, the odds of 

pneumonia are affected by both operative time and transfu-

sions; the unadjusted (for transfusion) Mantel-Haenszel 

(M-H) odds [15] (95% confidence interval) of pneumonia 

are 1.66 (1.55 – 1.77) reflecting conflation of the two causes 

[STATA command “mhodds”]. However, when adjusted for 

transfusion, the M-H odds of pneumonia from operative time 

drop to 1.32 (1.24 – 1.40); the non-overlapping confidence 

intervals indicate a significant difference. The unadjusted 

odds include the causal effect of transfusion on pneumonia 

and the causal effect of operative time on pneumonia and 

transfusion, in addition to any other unobserved variables. 

Regression includes all effects in the unadjusted coefficient 

and can be deconfounded through adjustment for different 

potential causal factors, such as transfusion. The transfusion 

rate increases as operative time increases in a general pop-

ulation of surgeries (simple summary linear regression op-

erative time coefficient = 0.033 (0.031-0.035) where trans-

fusion is the dependent variable). The M-H odds of pneu-

monia due to transfusion and adjusted for operative time is 

5.68 (4.59 – 7.0). A separate 5-level logit model of pneu-

monia shows that the odds of pneumonia due to operative 

time and transfusion are 1.49 (1.20 – 1.86) and 2.45 (1.88 – 

3.19), respectively. The odds ratios reported from the 5-level 

logit model of pneumonia are preferred as they are adjusted 

for the entire set of independent variables, not just transfu-

sion or operative time. In the 5-level linear model of opera-

tive time, the coefficient for pneumonia when unadjusted for 

transfusion is 0.048 (0.013 - 0.0835; P = .007); however, 

adjusting for transfusion lowers the coefficient to 0.029 

(-0.005 - 0.065; P = 0.096). Longer duration operative time 

causes a greater risk of transfusions and pneumonia, while 

transfusions also cause a greater risk of pneumonia; the 

directed acyclic graph has an arrow that points from opera-

tive time to both transfusion and pneumonia, while transfu-

sion points to pneumonia [16]. 

4. Conclusion 

Additional random intercepts can improve model perfor-

mance, as reflected in the likelihood ratio test, residual vari-

ance, and risk misclassification. Traditional models focusing 

on hospitals alone or hospitals and surgeons may experience 

risk misclassification due to inadequate random effect deliv-
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ery system classification. However, the estimate of the dis-

tribution of risk across surgeons and hospitals and risk mis-

classification may be adversely impacted by too many random 

intercepts, as the within-surgeon/hospital variance exceeds 

the between-surgeon/hospital variance and reliability de-

creases. 

Assumption testing provides a basis for comparing model 

performance. Causal interpretation in a linear multilevel 

model requires meeting model assumptions of normality, 

homoscedastic errors, exogeneity conditions, and decon-

founding/deconflation. Confounding implies a level of con-

flation and unobserved or missing data. In the example of 

pneumonia, transfusion, and operative time, adjusting for 

transfusion significantly reduces the size of the coefficient for 

pneumonia, eliminating conflation and the effect of otherwise 

missing data. 

This study shows that model performance over that of a 

two-level model using additional random intercepts can be 

achieved. Random intercepts representing individual charac-

teristics of the patient setting or procedures used, in addition 

to those traditionally considered, could contribute value to the 

model, as shown in this example. This approach substantially 

reduces the risk of misclassification for both hospitals and 

surgeons. 

Author Contributions 

William Thomas Cecil is the sole author. The author read 

and approved the final manuscript. 

Conflicts of Interest 

The authors declare no conflicts of interest. 

References 

[1] Ruppert, D., M. P. Wand, and R. J. Carroll. 2003. Semipara-

metric Regression. Cambridge: Cambridge University Press. 

[2] Rabe-Hesketh, S., and A. Skrondal. 2022. Multilevel and 

Longitudinal Modeling Using Stata. 4th ed. College Station, 

TX: Stata Press. Based on: J. Martin Bland, Douglas G. Altman. 

Statistical Methods for Assessing Agreement Between Two 

Methods of Clinical Measurement. Lancet, 1986; i: 307-310. 

[3] Cecil W. T., Selection of Reliable and Valid Surgeon Perfor-

mance Measures, American Journal of Management Science 

and Engineering. Volume 5, Issue 5, September 2020, pp. 

62-69. https://doi.org/10.11648/j.ajmse.20200505.12 

[4] Hannan, Ph. D., E. L., Kilburn, Jr, MA, H., O'Donnell, MA, 

MS, J. F., Lukacik, MA, G., & Shields, E. (1990). Adult Open 

Heart Surgery in New York State: An Analysis of Risk Factors 

and Hospital Mortality Rates. JAMA, 2768 - 2774. 

[5] David M. Shahian, Sharon-Lise Normand, David F. Torchiana, 

Stanley M. Lewis, John O. Pastore, Richard E. Kuntz, Paul I. 

Dreyer, Cardiac surgery report cards: comprehensive review 

and statistical critique. This review is an abridged version of a 

report submitted by the Massachusetts Cardiac Care Quality 

Commission to the Massachusetts Legislature, May 2001., The 

Annals of Thoracic Surgery, Volume 72, Issue 6, 2001, Pages 

2155-2168, ISSN 0003-4975,  

https://doi.org/10.1016/S0003-4975(01)03222-2 

[6] Daley BJ, Cecil W, Clarke PC, Cofer JB, Guillamondegui OD. 

How slow is too slow? Correlation of operative time to com-

plications: an analysis from the Tennessee Surgical Quality 

Collaborative. J Am Coll Surg. 2015 Apr; 220(4): 550-8. 

https://doi.org/10.1016/j.jamcollsurg.2014.12.040.  

[7] Maruthappu, M., Duclos, A., Lipsitz, S. R., Orgill, D., & Carty, 

M. J. (2015). Surgical learning curves and operative efficiency: 

A cross-specialty observational study. BMJ Open, 5(3).  

https://doi.org/10.1136/bmjopen-2014-006679 

[8] StataCorp. 2021. Stata Statistical Software: Release 17. Col-

lege Station, TX: StataCorp LLC. 

[9] Brown, M. B., and A. B. Forsythe. 1974. Robust tests for the 

equality of variances. Journal of the American Statistical As-

sociation 69: 364–367. https://www.jstor.org/stable/2285659 

[10] Altman, Douglas G. and Bland, Martin J. The normal distri-

bution. British Medical Journal, 310: 298. February 4, 1995. 

[11] Wooldridge, Jeffrey M., (2012). Introductory econometrics: a 

modern approach. Mason, Ohio: South-Western Cengage 

Learning. 

[12] Bland, M. (2015). An Introduction to Medical Statistics (4th 

ed.). Oxford: Oxford University Press. 

[13] Hausman, J. A. 1978. Specification tests in econometrics. 

Econometrica 46: 1251–1271.  

https://doi.org/10.2307/1913827 

[14] Greene, W. (2018) Econometric Analysis. 8th Edition, Pearson 

Education Limited, London. 

[15] Clayton, D. G., and M. Hills. 1993. Statistical Models in Epi-

demiology. Oxford: Oxford University Press. 

[16] Pearl J. Causality: Models, Reasoning, and Inference. Cam-

bridge University Press, second edition, (2009). 

 

 

http://www.sciencepg.com/journal/ajtas
https://doi.org/10.1016/S0003-4975(01)03222-2
https://www.jstor.org/stable/2285659

