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Abstract: Financial markets are ever closer interconnected, the superimposed impact and scope of multiple systemic financial 

risks such as epidemics, wars, and supply chains are expanding day by day, and the risk of contagion and spread of financial 

crises has become a problem that cannot be ignored. With the deepening of the theoretical research of complex networks, the 

combination of systemic financial risks and complex networks has become more closely connected. Financial networks are 

characterized by the accumulation of multiple risks, and their overall stability depends on the stability of specific nodes in the 

network. Therefore, accurately identifying and ranking high-risk nodes has become a difficult point restricting the improvement 

of resource utilization efficiency, and it has become extremely critical. Based on the complex network theory, firstly, a directed 

graph from the massive financial risk warning information is constructed in this paper, and obtains the subject community of 

financial risk incidents. Then the superimposed impact of multiple systemic financial risks is measured from the three 

dimensions of complex network topology, financial risk behavior and risk propagation probability. Finally, the influence 

distribution and dissemination rules of nodes are analyzed in the subject community, and a high-risk nodes identification 

algorithm CIRA (community-based identifying and ranking algorithm) is proposed. Experiments show that the algorithm can 

effectively mine potential high-risk nodes and obtain higher risk density. 
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1. Introduction 

In recent years, financial risk events such as the 

Russia-Ukraine war, the epidemic, and the European debt 

crisis have occurred continuously. These sudden and 

catastrophic events have brought serious humanitarian, 

economic and social challenges to countries around the world, 

and the global political and economic situation has 

undergone profound changes. At the same time, it has also 

spawned a series of new forms of international cooperation 

and competition, exacerbating the instability of the global 

financial system and the volatility of financial markets. In 

this context, social and economic subjects have become a 

community of economic interests, and the systemic 

characteristics of the financial crisis are also particularly 

prominent, and risk factors are shared. Because the 

interwinded feature allows risks to spread throughout the 

financial markets, the financial stability can be threatened 

through cascading in financial networks [1]. The contagion 

characteristic of financial risk is one of the important causes 

of financial crisis. 

The financial crisis is an eternal phenomenon, which is 

always caused by the risk accumulation and finally leads to 

the crisis. Looking at the previous financial crises in the 

world, they have experienced the evolution process from risk 

accumulation, explosive events, transmission to crisis 

deepening [2]. Looking back at the process of the typical 

COVID-19 epidemic continuing to trigger financial crisis 

risks: From the perspective of the transmission mechanism, 

the financial crisis is transmitted to the banking crisis and 

economic crisis through the balance sheet recession, and the 

domestic crisis is transmitted to the world through the chains 

such as trade, external demand, financial markets and other. 
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From the perspective of response, the timeliness and 

effectiveness of policy responses will affect the degree of 

damage to the crisis by alleviating the liquidity crisis, 

restoring solvency, and blocking the spread of financial 

network risks in a timely manner [3]. 

Under the background of financial liberalization and 

economic globalization, financial risks present a high degree 

of complexity and variability [4]. Financial risk has multiple 

dimensions from the length of the cycle to different coverage. 

The cumulative contagion effect of these multi-dimensional 

financial risks should attract special attention, because it is 

generally not easy to find, and once it occurs, the impact will 

be very huge. Corresponding to the type and quantity of 

financial risks, massive systemic financial risks information 

data is generated. These massive, sporadic and messy 

financial risks data are often not equal to true and effective 

risk information, nor can they constitute effective crisis 

incidents alone, nor can even form the guiding basis for risk 

prevention and control measures. 

On the one hand, the deluge of redundant, insignificant 

warning data creates enormous stress and illusion for 

socioeconomic subjects or regulatory departments, and even 

the serious warnings are disregarded. How to efficiently 

handle the massive amounts of financial risks warning 

information has become a challenging task. Due to the lack 

of timely assessment of financial risks, risk prevention and 

control measures are seriously delayed. Only by realizing 

intelligent early warning based on the perception of harmful 

behavior, intelligent filtering and correlation of warning 

information, it is possible to fully realize the efficient 

response to financial risks information [5]. 

On the other hand, the risk warning information is 

scattered and messy, and potential financial crisis incidents 

are not easy to find. Generally, the medium-high-risk 

warning information can be processed in time, while the 

large number of medium-low-risk warning information is 

easily ignored. Obviously, some scattered warning 

information is correlated to each other. Behind the huge 

information set, there are systematically consistent and real 

and effective subject of financial crisis incidents. Through 

correlation analysis and merging, it is possible to dig out the 

conduction mechanism hidden in the massive warning 

information. Regrettably, these interrelated and widely 

distributed low-risk warning information are always ignored 

and omitted due to disorder and dispersion, until the 

cumulative effect of risks led to serious consequences [6]. 

Issues of financial stability have become increasingly 

sensitive and important, it is necessary to proactively prevent 

and effectively resolve various hidden risks in the economic 

and financial fields, and put the prevention and control of 

financial risks in a more important position [7]. For social 

and economic entities and regulatory authorities, it is of great 

significance for preventing and defusing financial risks to 

analyse the cumulative contagion effect of financial risks and 

identify systemically important financial institutions in 

financial risk contagion. Therefore, it is necessary to 

establish a complete risk analysis framework for the 

cumulative contagion effect of multi-dimensional financial 

risks. 

The CIRA (community-based identifying and ranking 

algorithm) financial incident and risk analysis system 

described in this paper mainly includes the following works: 

First, a complex network processing model for massive 

scattered risk warning information is proposed. Based on the 

theory of complex networks, a semantic data warehousing of 

financial stability warning information is generated. 

Second, the discovery of subject community of financial 

risk incidents. Data extraction and data cleaning are carried 

out on the raw data of financial stability warning information, 

and then normalization, classification, and aggregation are 

used to identify financial risk subject incidents, then form a 

subject community. 

Third, the identification and ranking of potential high-risk 

nodes. It not only analyses the structural features and 

behavioral features of complex network entity nodes, but also 

analyses the risk propagation probability, the risk density 

characteristics of network entity nodes are obtained. 

2. Related Work 

It is found that the normal operation of functions in a 

complex network greatly depends on a number of important 

nodes. In recent years, research on key nodes in complex 

networks has attracted widespread attention [8]. A large 

number of studies have shown that large-scale complex 

networks abstracted from various real world have three basic 

statistical characteristics: small world [9], scale-free and 

clustering [10]. The small world phenomenon shows that the 

key nodes in the complex network need to be responded to 

with priority, and the propagation speed of financial risks will 

be reduced more rapidly. The scale-free characteristic and the 

clustering characteristic multiply the effectiveness of the 

countermeasures against financial risks. Under the response 

mechanism of the targeted strategy, the scale-free network 

appears extremely fragile. It is precisely because of the above 

three characteristics that the research on nodes importance is 

of great significance for the financial stability. The 

heterogeneity of entity nodes in financial risk complex 

network determines the non-equivalence of the node status. 

Previous work has studied the systemic financial risk 

contagion of financial networks from different perspectives. 

A proper assessment of firm-specific risk must take into 

account potential risk spill over effects from other firms [11]. 

The potential impact of interconnected financial institutions 

on the overall financial system has been a financial stability 

concern for central banks and regulators. The need for an 

economic basis for systemic risk measures is not merely an 

academic issue, as it involves regulators, regulators, and 

policymakers [12, 13]. Cai’s results emphasize that reducing 

risk at the institutional-level through diversification ignores 

the negative externalities of an interconnected financial 

system [14]. The above research has shown the importance of 

cross-sectional dependencies of assets, credit exposures and 

volatility, which can threaten the financial stability through 
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cascades in financial networks. 

And most studies have shown that the network structure is 

the key to affecting systemic financial risk contagion. Some 

entity nodes have a greater influence on other entity nodes, 

and can play a key guiding role in the development of the 

financial risk situation, which called as “influential high-risk 

nodes” [15]. Shahzard et al. applies a bivariate 

cross-quantilogram method to examine the spill over network 

structure of stock markets in 58 countries. And the 

directionality of risk contagion and key nodes in risk 

contagion is analysed, so as to identify the strongest 

interdependencies, the directionality of the spill over risk 

effects, and to detect those equity markets with the potential 

to cause global systemic risk [16]. Based on the view of risk 

spill over, Liu Chao et al. apply the GARCH model and the 

generalized forecast error variance, and use the variance 

contribution calculated by the generalized forecast error 

variance decomposition as the adjacency matrix to construct 

a financial risk spill over network. The direction and intensity 

of risk contagion are analysed from dynamic and static 

perspectives, and the risk centres and their evolution are 

identified within crisis applying approaches of spill over 

index and complex network [17]. One of the important 

research issues on the complex networks is the quantitative 

analysis of the importance of all nodes, so as to discover and 

mine the core nodes. The research on the influence model of 

node in complex network has great theoretical value and 

practical application value, which has the applications in 

many fields due to its universality [18, 19]. In a complex 

network abstracted by financial risk information, the local 

features, the global features, and the random walk algorithms 

are comprehensively considered, which is of great 

significance for the study of high-risk node feature models 

and the design of high-risk node mining algorithms. 

 

Figure 1. The overall framework for identification and ranking influential high-risk nodes. 

3. Constructing a Directed Graph from 

the Massive Financial Risk Warning 

Information 

The massive financial risk warning information is of great 

analysis and mining value for data-driven financial risk 

incident prediction and disposal. The data assets that have 

undergone data pre-processing are called as risk warning 

metadata. 

In the data pre-processing stage, the following operations 

are performed, grouping by time interval, valid field 

extraction and data cleaning. Grouping by time interval will 

set a time window T as a period, and group warning metadata 

containing the same behavior according to T, then perform 

subsequent aggregation processing of host node ID. 

Generally, the controlled nodes infected with the same risks 

show a certain degree of consistency in their behavior 

patterns. Therefore, their warning metadata has certain 

periodic characteristics. The setting of a reasonable time 

interval can make the detection of certain harmful behaviors 

more accurate. The effective field extraction will extract the 

key fields from warning metadata, such as timestamp, node 

ID, access domain name, etc. Data cleaning completes 

redundant data filtering and filtering by white list. At the 

stage, the processes are finished, such as data record linking, 

semantic integrating, and data object labeling, thereby 

ensuring data quality and credibility. A unified format of 

financial risk incident set V= {v1, v2, …, vn} is formed, and 

the output structure of its elements is a sequence of 

<timestamp, node ID, risk incident>. 

The Figure 1 shows the overall framework for 

identification and ranking influential high-risk nodes. It 

mainly includes four aspects of work: 

1) Generate semantic data warehousing of financial risk 



128 Yishuo Wu and Zhongjun Li:  Identification and Ranking of High-Risk Nodes in Complex Financial Networks  

 

warning information. 

2) Construct subject community of risk incident. Through 

the data analysis of semantic data warehousing, the 

clustering algorithm is used to identify risk incidents, 

and the node mapping of risk incidents is performed 

after the risk incident set is obtained, then form a 

subject community. 

3) The features analysis of an influential high-risk nodes. 

From the warning data resources, the three main 

features of complex network nodes: the structure 

features, the behavior features, and the risk diffusion 

probability are extracted to describe high-risk nodes. 

4) The identifying and ranking algorithm of influential 

high-risk nodes. On the basis of analyzing the features 

of complex network nodes, a identifying and ranking 

algorithm of high-risk nodes is devised. 

3.1. Semantic Data Warehousing of Financial Risk Warning 

Information 

As shown in Figure 2, the semantic ETL (extraction, 

transfor-mation, and loading) process for financial risk 

warning information is devised to enable complex network 

models and warning data to be dynamically integrated into 

the data warehouse. In which, RSD (Raw Structured Data) is 

a massive raw financial risk warning information. UML, the 

de facto standard for object-oriented visual modeling, is used 

as a visual modeling for warning data flow. OML (Ontology 

Model Language) is an engineering modeling method that 

describes the logic relationship between concepts and any 

data assets from various detection nodes of financial risk. It 

provides class hierarchies, profiles, properties, and 

equivalencies for risk warning. It also provides a means for 

multiple ontologies to coexist and for mappings to be defined 

between them such as harmful behavior, victim node. The 

data extractor handles CQL (Continuous Query Language) 

queries of RSD metadatas and the relationships between 

those RSD metadatas. Then, the ETL Process delivers the 

RSD data to a transformer service instance that provides an 

RSD to OML transformation. The resulting OML instance 

data is then loaded in the risk warning data warehouse. An 

automatic transformation process from warning metadata 

(annotated UML information models) into OML ontologies is 

implemented by the data ontology generator. The data 

warehouse of risk warning is a semantic data warehousing, 

allows users to define which data sources they are interested 

in and automates the ETL process through semantic ETL 

(SETL) [20] across entire classes of data sources. It also is 

dynamic data stores, which can model and integrate new data 

sources from diverse detection services of financial risk on 

the fly. 

 

Figure 2. The semantic ETL process for financial risk information. 

3.2. Transformer: The Generation Framework of Directed 

Graph 

As shown in Figure 3, the generation framework of 

directed graph implements an automatic transformation 

process from warning metadata, that is RSD, into OML 

ontologies. The following relation is defined as a farm-out 

relationship or subordination relationship formed for a 

certain service imple-mentation, there are frequent service 

interactions among relationship subjects. Such as, the 

relationship between the financial institution and the loan 

enterprise, or among the guarantors in a guarantee network 

structure, or the relationship among the “peer nodes” in a P2P 

lending network. A guarantee network is used as an example 

to illustrate the generation mechanism of directed graph. 

According to the New Basel Capital Accord, the loan status 

can be divided into five statuses: normal, concern, secondary, 

and suspect, and loss. For the convenience of research, this 

paper only considers the two statuses of the enterprise, and 

the loss status can be regarded as being infected by risk status, 

and considers normal, concern, secondary, and suspect as 

vulnerable to risk status. 
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Figure 3. The generation framework of directed graph from financial risk metadata. 

Data clustering is to perform aggregation operations on 

risk warning metadata in a time interval. A certain type of 

loan is used as the key value, the guarantee network nodes 

are aggregated, and the clustering result is <timestamp, loan 

type, node ID set>, where the timestamp is used to mark the 

occurrence of these loan operations time interval. The 

bipartite graph method is used to construct the access 

relationship graph. There are two types of nodes in the 

bipartite graph of the access relationship. The node set {node 

ID1, node ID2... node IDn} represents the node ID set with 

guarantee or loan behavior, and the node set D = 

{timestamp#loan type1, timestamp#loan type2... timestamp# 

loan typen} represents the loan type set in the time interval T. 

The guarantee relationship set A = <hi, di >, (hi∈H, di∈D) 

is defined to represent the adjacency relationship between the 

node ID hi and its corresponding loan type di. Based on the 

guarantee relationship set, each loan type node and its 

corresponding adjacent node are constructed as a guarantee 

relationship linked list. In the linked list, the element in the D 

set is the head node of the linked list, and the subsequent 

node is the node ID node in the H set. The order of the node 

ID is in descending order according to the degree of the node 

in the entire relationship graph. Further, the different linked 

lists are arranged in order, and the rule is the arrangement in 

descending order according to the degree of the loan type 

node in the entire relationship graph. 

Each path starting from the root node in the 

above-mentioned access relationship linked list is a 

combination of candidate nodes. The nodes set on the path 

represents the set of host IDs, and the list of 

<timestamp#loan type> of the root node in a linked list 

represents the collection of loan type in common by these 

node IDs. Then a candidate guarantee node combination 

Cb=Structure<hi set, di set>, (hi∈H, di∈D) is formed. In 

the combined structures of all candidate nodes, if there is an 

inclusion relationship, it is necessary to remove all included 

data records through a redundant screening. 

At the same time, in order to improve the accuracy of 

candidate risk status node combinations, a threshold 

screening is used to select the results with higher infection 

probability. For example, a threshold Th for the number of 

node ID and a threshold Td for the number of loan type are 

set. For all candidate node combinations, the data records 

that meets the following conditions are retained: 

Cbi={<hi,di>}, sizeof (hi)>Th, sizeof (di)>Td. The nodes that 

show the same loan or guarantee behavior many times are 

considered the high-risk nodes infected by botnets. Therefore, 

for a data record in the screening results, if the greater the 

number of elements in H set and the greater the number of 

elements in D set, then the higher the probability that these 

nodes will be infected. 

The warning metadata set Vi = {v1, v2,..., vn} is divided into 

two types of OML ontologies: node set and edge set. These 

two types of ontologies are imported during the RSD 

metadata to OML transformation process, and are the same 

for any RSD-derived OML ontology. The loan source, 

guarantor, and associated object information (files) involved 

in a financial risk incident are stored as nodes, and the node 

set Ni = {n1, n2,..., nn} is used to store the set of network 

entities involved in harmful behavior. The system assigns the 
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KEY value to uniquely identify the ontologies data. Edge sets 

are used to store the behavior relationships between network 

entities, and are divided into two categories: the harmful 

behavior relationship set Ei= {e1, e2,...., en}, and the 

non-harmful behavior relationship set !Ei ={!e1,!e2,....,!en}. A 

specific behavior relationship in the edge set is called an edge, 

and the system assigns the KEY value of the edge set to 

(source point, destination point), which is used to uniquely 

identify a specific edge in the directed graph. Furthermore, 

the corresponding relationship between the node set and the 

edge set is constructed. The corresponding relationship must 

be directed, and the same relationship may correspond to 

multiple source points and end points. The directed graph 

from financial risk warning metadata Gi={g1, g2,...., gn} is 

formed. Upon receiving the request for computing attack 

chain and spreading chain from the system, the calculation of 

the global weakly connected graph is executed, then the 

attack chain, infection chain, or spreading area are 

automatically obtained. 

4. Identification and Ranking of 

High-risk Nodes 

4.1. Topology Construction of Subject Community of 

Financial Risk Incidents 

In the process of the spread of financial risks, the 

behavioral relationships among complex network entity 

nodes are all related to specific financial risk incidents. The 

entity nodes in a complex network with similar risk 

behaviors usually form a virtual community with “financial 

risk incidents” as the core, which is called subject community 

on financial risk incidents in this paper. The features of 

financial risk incident in the subject community provide rich 

semantic support for the feature extraction of entity nodes in 

a complex network. It is helpful to mine potential high-risk 

nodes in the infection chain, and help the design of 

identification and ranking algorithms. 

Based on the knowledge graph of financial risk incident, 

the corresponding interactive network topology can be 

constructed according to the directed graph set Gi related to 

the specific financial risk incident ti. The construction 

process can be vividly described in Figure 4. First, the 

carriers of all financial risk incidents are found out in Gi of 

level 2 to form a entity node set U in complex network. First, 

the carriers of all financial risk incidents are found out in Gi 

set of level 2 to form an entity node set U in complex 

network. Then, the interaction relationships among entity 

nodes in the raw data set are extracted and add them to the 

set U, the subject community topology is obtained, as shown 

in level 1 in Figure 4. Algorithm 1 shows the construction 

process of the community topology of the financial risk 

incident subject. 

 

Figure 4. The construction of subject community of financial incident. 
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4.2. Features Analysis of High-Risk Nodes 

After the construction of the financial risk incident subject 

community, mining the influence features of entity nodes has 

become a key factor for identification and ranking high-risk 

nodes. The influence of entity nodes is the result of joint 

action of multiple complex factors. The structure, behavior 

and risk spreading probability of entity nodes are selected as 

the influence features in this paper. 

4.2.1. Structural Features 

The structural features reflect the structural influence of 

the complex network topology and the influence of the entity 

node itself, such as the betweenness centrality of the entity 

node, the nodes number of accessing and the nodes number 

of being accessed [21]. From the topology model of the 

directed graph of the financial risk, the feature value can be 

obtained and normalized. The maximum and minimum 

normalization method is adopted in this paper. Assuming that 

a certain feature value is quantified as f, the maximum value 

is fmax, and the minimum value is fmin, the normalized value fn 

is: 

�� � ��������	
�����                   (1) 

The average value of the normalized value is used as the 

structural feature value of an entity node: 

��
� � �
����������� � 
������ � 
���������/3    (2) 

Among them, ubetweenness is the normalized value of 

betweenness centrality, uaccess is the normalized value of the 

nodes number of accessing, and uaccessed is the normalized 

value of the nodes number of being accessed. 

4.2.2. Behavioral Features 

Behavioral features are summarized in the following two 

points: 

1) Activeness: the number of effective malicious behaviors 

initiated, forwarded, and responded to by an entity node 

within a unit time, denoted as uactive; 

2) Spreading power: the effective number of malicious 

actions of an entity node that are forwarded and responded to 

by other entity node within a unit time, denoted as uspread. 

In the topological structure, these two characteristics of 

activeness and spreading power are quantified and 

normalized, and then the average value is taken to obtain the 

behavioral feature value of an entity node. 

��
� � �
������ � 
�������/2            (3) 

4.2.3. Risk Spreading Probability (Rsp) Features 

For any entity node i, define its risk status as Ri,t at time t, 

Ri,t=1 indicates that a financial risk has occurred, and Ri,t=0 

indicates that the entity node is not yet infected by a risk. 

Each entity node in the directed graph is a relatively 

independent node, and each node has a certain difference in 

its capability against financial risk due to its different 

susceptibility status. Network entities in reality have different 

possibilities of being affected by risks because of their 

different networking environments, management levels, and 

operating services. However, for different types of viruses or 

threats, the probability of different network entities being 

infected or affected is close. Just like the probability of being 

infected by COVID-19 viruses is usually higher than the 

probability of being infected by AIDS. Assuming that there is 

a following relationship between the entity node ui and the 

entity node uj with service interaction, when the entity node 

uj has a cyber risk, the probability that the entity node ui is 

infected by the risk k is  ! , which corresponds to the 

warning level outputted by the intrusion detection node,  ! ∈ �#$%#,'()$
', *+,�. Obviously, if an entity node has 

a following relationship with two other nodes with service 

interaction, and the other two nodes have risk k, the 

probability that the entity node ui is infected by risk k is 1 . �1 .  !�/ . Therefore, the risk spreading probability 

feature of a single node can be expressed as the probability 

that node ui is infected by risk k at time t+1: 

012�,� � 13 � 1 . �1 .  !�4�,5 , $ � 1, 2, … , 7.    (4) 

in which, k∈Risk(i), Risk(i) are the full set of risks of entity 

node ui, 9�,� is the sum of risks of all nodes that point to i, 

when there is an edge from node uj to node ui, sj,i=1, 

otherwise, sj,i=0. 

9�,� � ∑ ;<,� ∗><?@ 2<,� , $ � 1, 2, …7.        (5) 

4.3. Algorithm for Mining High-Risk Nodes 

Considering the structural features, behavior features and 

risk spreading probability features of entity nodes, a high-risk 

node mining algorithm CIRA is proposed. The expected 

result of the mining algorithm is that the entity nodes with 

the following characteristics should have a higher priority for 
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processing. 

1) Normalize the risk quantity and warning level of entity 

nodes itself, and the result of the entity node is at the 

forefront. 

2) The weighted path length between the entity node and 

all following nodes is at the forefront. 

The algorithm uses formula 6 to calculate the financial risk 

influence value of an entity node. 

AB2C��DE
FD
E(, �(#GH$+E, 2;I� � B7J�
�� � �1 . )�1��
�� � ��
��3 � ) ∗ ∑ K012�,� � 13 �L1M�,5?@3∑ L1MN,5?@3OPNNPQRS���N∈OPNNPQRS��� ∗ B7J1
<3T|M��!���|!∈M��!��� 	   (6) 

Where the INF(ui) is the influence value of the entity node 

ui, the S(ui) is the normalized structural feature of the ui, the 

B(ui) is the normalized behavior feature of the ui, the P(Ri, 

t+1=1) is the feature weight of the risk spreading probability 

of the ui, the Followers(i) is the full set of nodes that have a 

following relationship with node ui, d is a damping factor and 

its value is set 0.8 here. The CIRA algorithm draws on the 

idea of PageRank, a webpage importance ranking algorithm, 

and believes that the financial risk influence of an entity node 

is not only closely related to its structural and behavioral 

features, but also depends on the risk spreading probability of 

its following nodes. If the following node of the ui has a 

greater risk spreading probability to the entity node ui, the 

greater the corresponding influence weight is also, and the 

greater the contribution to the ui influence. On the other hand, 

the financial risk influence of ui is also related to the 

influence of its following nodes. If the financial risk 

influence of its following nodes is generally high, it will 

greatly contribute to the financial risk influence of the ui. 

Therefore, the CIRA (Structure, Behavior, Rsp) algorithm not 

only has the advantages of PageRank, but also combines the 

features of risk spreading probability to discover in-depth 

influencing factors. The detailed description is as follows 

algorithm 2. 

Assuming that the total number of entity nodes in the 

topology model is n and the number of iterations is K, then 

the time complexity of the above CIRA algorithm is O(Kn
2
). 

 

5. Experiment Analysis 

5.1. Data Description 

The main parameters that measure the constructed 

complex network are shown in Table 1. Among them, the 

“maximal connected subgraph” is the number of nodes 

contained in the subgraph, the “average out-degree” and the 

“average in-degree” refer to the measured value of the node 

with a removal degree of 0. The “average clustering 

coefficient” and the “average path length” are the 

measurement values that the maximal connected subgraph is 

transformed into an undirected graph. Although the average 

path length is deviated from the optimal value of 6 in small 

world network theory, and the average clustering coefficient 

is larger, it is in the acceptable range. These two indicators 

reflect that the financial risk information network conforms 

to the characteristics of the small world network. The 

out-degree and frequency of the node are measured, and the 

double logarithmic form is used to draw as shown in Figure 5. 

It can be seen that the out-degree distribution of the nodes 

conforms to the power law distribution well. It is a scale-free 

network with power law coefficients of -3.0267. The 

in-degree distribution is similar and will not be repeated here. 

Its small-world characteristics and scale-free characteris-tics 

show that the directed graph of financial risk information is a 

complex network. 

Table 1. Basic measurements of complex network about financial risk. 

Parameter name Parameter value 

Number of nodes 36878 

Number of edges 31496 

Maximal connected subgraph 8815 

Average out-degree 1.5211 

Average in-degree 1.6152 

Maximal out-degree 16 

Maximal in-degree 144 

Average clustering coefficient 0.1214 

Average path length 13.1524 

 

Figure 5. Double logarithm diagram of the out-degree distribution. 
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5.2. Comparison Algorithms 

In order to verify the effectiveness of the CIRA algorithm, 

two comparison algorithms [22, 23] and comparison 

experiments are designed in this paper, are described as 

follows. 

RspRank algorithm: A ranking algorithm based on the 

features of risk spreading probability. In the subject 

community of financial risk incident, the ratio of the Rsp 

weighted value of an entity node to the weighted value of the 

total Rsp is defined as the influence of the entity node. 

RspHITS algorithm: On the basis of the original structure 

of HITS, take the Rsp of the entity node as the weight of 

centrality and authority, and calculate the weighted centrality 

and authority according to formula 7: 

C
D#+E$DW�H�� � ∑ X<� ∗ Y
Z1H<3[�,[\∈]   

Y
Z�H�� � ∑ X<� ∗ C
D#+E$DW�H<�[�,[\∈]       (7) 

5.3. Experimental Results and Analysis 

The evaluation indicator Risk Density (RD) is used. 

Define the risk density at the time t as: ^t(vi)=1/N*|vj|, that is, 

the number of harmful behaviors (including the weight of 

risk level, which has been normalized) infected or spread by 

the node for the proportion of all harmful behaviors. N 

represents the total number of harmful behaviors in the 

community, and |vj| represents the number of harmful 

behaviors initiated and received between node vi and all 

following nodes vj. For directed networks, the lower ^t→∞ 

means the stronger the anti-risk capability of the node. 

Conversely, the nodes with higher ^t at a certain moment 

need more attention. 

Figure 6 shows the comparison results of the three 

algorithms. It can be seen that the CIRA algorithm and the 

RspHITS algorithm by multi-features are obviously better 

than the RspRank algorithm for direct ranking. When the 

selected Top-K is smaller, the CIRA algorithm can obtain a 

higher risk density. Although the RspRank algorithm 

considers the features of risk spreading probability, it is only 

an evaluation of the influence of individual entity node, while 

the CIRA algorithm not only considers individual factors, but 

also comprehensively considers the potential impact 

relationship among following nodes. This also confirms the 

spreading law of the influence interaction among entity nodes 

in complex networks. Similarly, the RspHITS algorithm uses 

authority and centrality to reflect the mutual influence 

between network nodes, which has greater advantages than 

the RspRank method. 

6. Conclusion and Recommendations 

As more and more raw data sets are available from 

financial quantitative analysis nodes, the effective data 

analysis methods are needed to improve the efficiency of 

financial risk prevention and control. A processing model 

established for the massive amount of scattered financial 

information is proposed in this paper, the risk information 

metadata is normalized, classified and aggregated. They are 

used to generate complex networks that contain logical 

relationships among harmful behaviors, entity nodes, and 

propagation paths. On this basis, starting from the topological 

structure and risk spreading probability features in the 

complex network, the issue of mining high-risk nodes is 

studied based on the multi-feature analysis method. Various 

comparative experiments show that the CIRA algorithm 

proposed in this paper can more effectively find out the 

high-risk nodes in domain-specific, and the obtained 

high-risk nodes have a higher risk density. 

The dynamics of financial risk complex networks is an 

issue that needs attention in the future. From the perspective 

of the dynamic development of the financial risk situation, 

new crisis incidents will continue to emerge and new harmful 

behaviors will emerge between nodes. The real-time changes 

of the complex network itself determine that the entire 

complex network is an evolving dynamic graph. For the 

identifying and ranking of high-risk nodes, such development 

and changes need to be considered. At the same time, the 

influence of overlapping communities and structural holes 

between communities needs to be carefully considered in the 

methodology to further improve the accuracy of the 

identifying and ranking of influential high-risk nodes. 

 

Figure 6. Comparison results of three algorithms considering Rsp features: 

CIRA, RspRank and RspHITS. 

As the core of modern economy, financial stability is a 

major prerequisite for economic stability. In order to achieve 

the goal of financial stability and economic stability, it is 

necessary to proactively prevent and effectively resolve 

various risks and hidden dangers in the economic and 

financial field, and put the prevention and control of financial 

risks in a more significant position. The method in this paper 

has the following important policy implications: First, in 

order to achieve the goal of healthy operation of the financial 

market, the risk management and the supervision for 

financial institutions should be strengthened; the healthy 

operation of the financial market should be promoted; the 

various processes and orders should be standardized; and the 
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cumulative contagion effect of financial risks should be 

analyzed on a regular basis. Regulatory authorities should 

strengthen the identification and supervision of financial 

institutions with the feature of systemically important in 

financial risk contagion, prevent the accumulation and spread 

of systemic risks, and cut off the domino effect of financial 

risk contagion. Secondly, regulatory authorities need to 

improve the evaluation indicators of systemic importance; 

establish and improve the index system of scale, relevance 

and complexity, etc.; fundamentally explore the risk 

contagion path of financial institutions; and improve the 

accuracy and operational efficiency of comprehensive 

response measures to global financial turmoil. 
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